p-adic representations and arithmetic D-modules

Grassmannians

Andrés Sarrazola Alzate

University of Padua

October 15th, 2020
Definition

Plücker embedding

Totally decomposable vectors

Main theorem

Examples

Flag varieties
Main idea.

To parametrize higher dimensional subspaces of a fixed (complex) vector space V.

Set-theoretic definition

Definition. Let us suppose that V is an n-dimensional vector space. We define the Grassmannian $G(k, V)$ as follows:

$$G(k, V) := \{ U \subseteq V \mid \dim(U) = k \}.$$

Objective

To realize Grassmannians as projective varieties.
Set-theoretic definition

Main idea.

To parametrize higher dimensional subspaces of a fixed (complex) vector space V.

Set-theoretic definition

Definition. Let us suppose that V is an n-dimensional vector space. We define the Grassmannian $G(k, V)$ as follows:

$$G(k, V) := \{ U \leq V \mid \dim(U) = k \}.$$

Objective

To realize Grassmannians as projective varieties.
Set-theoretic definition

Main idea.

To parametrize higher dimensional subspaces of a fixed (complex) vector space V.

Set-theoretic definition

Definition. Let us suppose that V is an n-dimensional vector space. We define the Grassmannian $G(k, V)$ as follows:

$$G(k, V) := \{ U \leq V \mid \dim(U) = k \}.$$
Main idea.

To parametrize higher dimensional subspaces of a fixed (complex) vector space V.

Set-theoretic definition

Definition. Let us suppose that V is an n-dimensional vector space. We define the Grassmannian $G(k, V)$ as follows:

$$ G(k, V) := \{ U \subseteq V \mid \dim(U) = k \}. $$

Objective

To realize Grassmannians as projective varieties.
Set-theoretic definition

Main idea.

To parametrize higher dimensional subspaces of a fixed (complex) vector space V.

Set-theoretic definition

Definition. Let us suppose that V is an n-dimensional vector space. We define the **Grassmannian** $G(k, V)$ as follows:

$$G(k, V) := \{ U \subseteq V \mid \dim(U) = k \}.$$

Objective

To realize Grassmannians as projective varieties.
Set-theoretic definition

Main idea.

To parametrize higher dimensional subspaces of a fixed (complex) vector space V.

Set-theoretic definition

Definition. Let us suppose that V is an n-dimensional vector space. We define the **Grassmannian** $G(k, V)$ as follows:

$$G(k, V) := \{U \subseteq V | \dim(U) = k\}.$$

Objective

To realize Grassmannians as projective varieties.
Main idea.

To parametrize higher dimensional subspaces of a fixed (complex) vector space V.

Set-theoretic definition

Definition. Let us suppose that V is an n-dimensional vector space. We define the **Grassmannian** $G(k, V)$ as follows:

$$G(k, V) := \{ U \leq V \mid \dim(U) = k \}.$$

Objective

To realize Grassmannians as projective varieties.
Dimension of the Grassmannian

Key observation

\[\mathbb{G}_m \text{ acts on } \mathbb{A}^{n+1} \setminus \{0\} \text{ by scalar multiplication and} \]

\[\mathbb{P}^n = (\mathbb{A}^{n+1} \setminus \{0\}) / \mathbb{G}_m. \]

Geometric description

Fixing a basis \(\{v_1, \cdots, v_n\} \) of \(V \) we have \(V \cong \mathbb{C}^n \) and

\[G(k, n) = \{U \subseteq \mathbb{C}^n \mid \dim(U) = k\}. \]

The **Linear group** \(\mathbb{G}L_k \) acts on \(M_{k \times n} \) on the left and

\[G(k, n) = M_{k \times n}^{\text{rank } k} / \mathbb{G}L_k \]
Dimension of the Grassmannian

Key observation

\mathbb{G}_m acts on $\mathbb{A}^{n+1} \setminus \{0\}$ by scalar multiplication and

$$\mathbb{P}^n = (\mathbb{A}^{n+1} \setminus \{0\}) / \mathbb{G}_m.$$

Geometric description

Fixing a basis $\{v_1, \cdots, v_n\}$ of V we have $V \cong \mathbb{C}^n$ and

$$G(k, n) = \{ U \subseteq \mathbb{C}^n \mid \dim(U) = k \}.$$

The **Linear group** $\mathbb{G}L_k$ acts on $M_{k \times n}$ on the left and

$$G(k, n) = M^{\text{rank} k}_{k \times n} / \mathbb{G}L_k$$
Dimension of the Grassmannian

Key observation

\(\mathbb{G}_m \) acts on \(\mathbb{A}^{n+1} \setminus \{0\} \) by scalar multiplication and

\[
P^n = \left(\mathbb{A}^{n+1} \setminus \{0\} \right) / \mathbb{G}_m.
\]

Geometric description

Fixing a basis \(\{v_1, \cdots, v_n\} \) of \(V \) we have \(V \cong \mathbb{C}^n \) and

\[
G(k, n) = \{ U \subseteq \mathbb{C}^n \mid \dim(U) = k \}.
\]

The **linear group** \(\mathbb{G}_L_k \) acts on \(M_{k \times n} \) on the left and

\[
G(k, n) = \frac{M_{k \times n}^{\text{rank } k}}{\mathbb{G}_L_k}
\]
Dimension of the Grassmannian

Key observation

\mathbb{G}_m acts on $\mathbb{A}^{n+1} \setminus \{0\}$ by scalar multiplication and

$$\mathbb{P}^n = (\mathbb{A}^{n+1} \setminus \{0\}) / \mathbb{G}_m.$$

Geometric description

Fixing a basis $\{v_1, \cdots, v_n\}$ of V we have $V \cong \mathbb{C}^n$ and

$$G(k, n) = \{ U \subseteq \mathbb{C}^n \mid \dim(U) = k \}.$$

The **Linear group** GL_k acts on $M_{k \times n}$ on the left and

$$G(k, n) = M_{k \times n}^{\text{rank } k} / \text{GL}_k.$$
Key observation

\(\mathbb{G}_m \) acts on \(\mathbb{A}^{n+1} \setminus \{0\} \) by scalar multiplication and

\[
\mathbb{P}^n = (\mathbb{A}^{n+1} \setminus \{0\}) / \mathbb{G}_m.
\]

Geometric description

Fixing a basis \(\{v_1, \cdots, v_n\} \) of \(V \) we have \(V \cong \mathbb{C}^n \) and

\[
G(k, n) = \{ U \subseteq \mathbb{C}^n \mid \dim(U) = k \}.
\]

The **Linear group** \(\text{GL}_k \) acts on \(M_{k \times n} \) on the left and

\[
G(k, n) = M_{k \times n}^{\text{rank } k} / \text{GL}_k
\]
Dimension of the Grassmannian

Key observation

\mathbb{G}_m acts on $\mathbb{A}^{n+1} \setminus \{0\}$ by scalar multiplication and

$$\mathbb{P}^n = (\mathbb{A}^{n+1} \setminus \{0\}) / \mathbb{G}_m.$$

Geometric description

Fixing a basis $\{v_1, \cdots, v_n\}$ of V we have $V \cong \mathbb{C}^n$ and

$$G(k, n) = \{U \subseteq \mathbb{C}^n \mid \dim(U) = k\}.$$

The linear group GL_k acts on $M_{k \times n}$ on the left and

$$G(k, n) = M_{k \times n}^{\text{rank } k} / \text{GL}_k.$$
Dimension of the Grassmannian

Key observation

\mathbb{G}_m acts on $\mathbb{A}^{n+1} \setminus \{0\}$ by scalar multiplication and

$$\mathbb{P}^n = (\mathbb{A}^{n+1} \setminus \{0\}) / \mathbb{G}_m.$$

Geometric description

Fixing a basis $\{v_1, \cdots, v_n\}$ of V we have $V \cong \mathbb{C}^n$ and

$$G(k, n) = \{ U \subseteq \mathbb{C}^n \mid \dim(U) = k \}.$$

The **Linear group** GL_k acts on $M_{k \times n}$ on the left and

$$G(k, n) = M_{k \times n}^{\text{rank } k} / \text{GL}_k.$$
Dimension of the Grassmannian

Key observation

\mathbb{G}_m acts on $\mathbb{A}^{n+1} \setminus \{0\}$ by scalar multiplication and

$$\mathbb{P}^n = (\mathbb{A}^{n+1} \setminus \{0\}) / \mathbb{G}_m.$$

Geometric description

Fixing a basis $\{v_1, \cdots, v_n\}$ of V we have $V \cong \mathbb{C}^n$ and

$$G(k, n) = \{U \leq \mathbb{C}^n \mid \dim(U) = k\}.$$

The **Linear group** GL_k acts on $M_{k \times n}$ on the left and

$$G(k, n) = M_{k \times n}^{\text{rank } k} / GL_k.$$
Dimension of the Grassmannian

$$\begin{pmatrix}
\lambda_{1,1} & \cdots & \lambda_{1,k} \\
\vdots & \ddots & \vdots \\
\lambda_{k,1} & \cdots & \lambda_{k,k}
\end{pmatrix} \leftrightarrow
\begin{pmatrix}
a_{1,1} & \cdots & a_{k,1} & \cdots & a_{1,n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{k,1} & a_{k,k} & \cdots & a_{k,n}
\end{pmatrix}$$

If the first $k \times k$ minor is non-zero, the orbit contains a unique element of the form

$$\begin{pmatrix}
1 & 0 & \cdots & 0 & b_{1,1} & \cdots & b_{1,n-k} \\
0 & 1 & \cdots & 0 & b_{2,1} & \cdots & b_{2,n-k} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & b_{k,1} & \cdots & b_{k,n-k}
\end{pmatrix}$$

$$\uparrow \text{bijection}$$

$A^{k(n-k)}$

$G(k, n)$ is covered by $\binom{n}{k}$ affine spaces $A^{k(n-k)}$.
Dimension of the Grassmannian

\[
\begin{pmatrix}
\lambda_{1,1} & \cdots & \lambda_{1,k} \\
\vdots & \ddots & \vdots \\
\lambda_{k,1} & \cdots & \lambda_{k,k}
\end{pmatrix}
\begin{pmatrix}
a_{1,1} & \cdots & a_{k,1} & \cdots & a_{1,n} \\
a_2 & \cdots & a_k & \cdots & a_n \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_k & \cdots & a_{k,n}
\end{pmatrix}
\]

If the first \(k \times k \) minor is non-zero, the orbit contains a unique element of the form

\[
\begin{pmatrix}
1 & 0 & \cdots & 0 & b_{1,1} & \cdots & b_{1,n-k} \\
0 & 1 & \cdots & 0 & b_{2,1} & \cdots & b_{2,n-k} \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & b_{k,1} & \cdots & b_{k,n-k}
\end{pmatrix}
\]

\(\uparrow \) bijection

\(\mathbb{A}^{k(n-k)} \)

\(G(k, n) \) is covered by \(\binom{n}{k} \) affine spaces \(\mathbb{A}^{k(n-k)} \).
Dimension of the Grassmannian

\[
\begin{pmatrix}
\lambda_{1,1} & \cdots & \lambda_{1,k} \\
\vdots & \ddots & \vdots \\
\lambda_{k,1} & \cdots & \lambda_{k,k}
\end{pmatrix}
\begin{pmatrix}
a_{1,1} & \cdots & a_{k,1} & \cdots & a_{1,n} \\
a_{2,1} & \cdots & a_{k,k} & \cdots & a_{k,n}
\end{pmatrix}
\]

If the first \(k \times k \) minor is non-zero, the orbit contains a unique element of the form

\[
\begin{pmatrix}
1 & 0 & \cdots & 0 & b_{1,1} & \cdots & b_{1,n-k} \\
0 & 1 & \cdots & 0 & b_{2,1} & \cdots & b_{2,n-k} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & b_{k,1} & \cdots & b_{k,n-k}
\end{pmatrix}
\]

\(\cong \) bijection

\(\mathbb{A}^{k(n-k)} \)

Dimension

\(G(k, n) \) is covered by \(\binom{n}{k} \) affine spaces \(\mathbb{A}^{k(n-k)} \).
Dimension of the Grassmannian

\[
\begin{pmatrix}
\lambda_{1,1} & \cdots & \lambda_{1,k} \\
\vdots & \ddots & \vdots \\
\lambda_{k,1} & \cdots & \lambda_{k,k}
\end{pmatrix}
\begin{pmatrix}
a_{1,1} & \cdots & a_{k,1} & \cdots & a_{1,n} \\
a_{2,1} & \cdots & a_{k,k} & \cdots & a_{1,n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{k,1} & \cdots & a_{k,k} & \cdots & a_{k,n}
\end{pmatrix}
\]

If the first $k \times k$ minor is non-zero, the orbit contains a unique element of the form

\[
\begin{pmatrix}
1 & 0 & \cdots & 0 & b_{1,1} & \cdots & b_{1,n-k} \\
0 & 1 & \cdots & 0 & b_{2,1} & \cdots & b_{2,n-k} \\
\vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & b_{k,1} & \cdots & b_{k,n-k}
\end{pmatrix}
\]

\[\xrightarrow{\text{bijection}}\]

\[\mathbb{A}^{k(n-k)}\]

\[G(k, n)\] is covered by \(\binom{n}{k}\) affine spaces \(\mathbb{A}^{k(n-k)}\).
Dimension of the Grassmannian

$$\begin{pmatrix}
\lambda_{1,1} & \cdots & \lambda_{1,k} \\
\vdots & \ddots & \vdots \\
\lambda_{k,1} & \cdots & \lambda_{k,k}
\end{pmatrix} \sim
\begin{pmatrix}
a_{1,1} & \cdots & a_{k,1} & \cdots & a_{1,n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{k,1} & \cdots & a_{k,k} & \cdots & a_{k,n}
\end{pmatrix}$$

If the first $k \times k$ minor is non-zero, the orbit contains a unique element of the form

$$\begin{pmatrix}
1 & 0 & \cdots & 0 & b_{1,1} & \cdots & b_{1,n-k} \\
0 & 1 & \cdots & 0 & b_{2,1} & \cdots & b_{2,n-k} \\
\vdots & \ddots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & b_{k,1} & \cdots & b_{k,n-k}
\end{pmatrix}$$

\uparrow bijection

$$\mathbb{A}^{k(n-k)}$$

$G(k, n)$ is covered by $\binom{n}{k}$ affine spaces $\mathbb{A}^{k(n-k)}$.
Dimension of the Grassmannian

\[
\begin{pmatrix}
\lambda_{1,1} & \cdots & \lambda_{1,k} \\
\vdots & \ddots & \vdots \\
\lambda_{k,1} & \cdots & \lambda_{k,k}
\end{pmatrix}
\begin{pmatrix}
a_{1,1} & \cdots & a_{k,1} & \cdots & a_{1,n} \\
\vdots & \ddots & \vdots & \ddots & \vdots \\
a_{k,1} & \cdots & a_{k,k} & \cdots & a_{k,n}
\end{pmatrix}
\]

If the first \(k \times k\) minor is non-zero, the orbit contains a unique element of the form

\[
\begin{pmatrix}
1 & 0 & \cdots & 0 & b_{1,1} & \cdots & b_{1,n-k} \\
0 & 1 & \cdots & 0 & b_{2,1} & \cdots & b_{2,n-k} \\
\vdots & \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1 & b_{k,1} & \cdots & b_{k,n-k}
\end{pmatrix}
\]

\[
\uparrow \text{ bijection}
\]

\(\mathbb{A}^{k(n-k)}\)

Dimension:

\(G(k, n)\) is covered by \(\binom{n}{k}\) affine spaces \(\mathbb{A}^{k(n-k)}\).
Definition

Plücker embedding

Totally decomposable vectors

Main theorem

Examples

Flag varieties
Plücker embedding

We have fixed a basis $B := \{v_1, \cdots, v_n\}$ of V.

The exterior algebra

Expressing $w_1, \cdots, w_k \in V$ in terms of the basis B we have

$$\left(\sum_{i=1}^{n} a_{i,1} v_i \right) \wedge \cdots \wedge \left(\sum_{i=1}^{n} a_{i,k} v_i \right) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \det(A(ik)) v_{i_1} \wedge \cdots \wedge v_{i_k}$$

Example. If $A := \{w_1, \cdots, w_n\}$ is another basis then $\text{det}(A(nn))$ is the determinant of the change of basis matrix $A \rightarrow B$.

The Plücker embedding

$$i : \quad G(k, n) \rightarrow \mathbb{P} \left(\wedge^k V \right)$$

$$W \quad \mapsto \quad [w_1 \wedge \cdots \wedge w_k]$$

{w_1, \cdots, w_k} is a basis for W. The map i is well defined by the preceding relation.
Plücker embedding

We have fixed a basis \(B := \{v_1, \cdots, v_n\} \) of \(V \).

The exterior algebra

Expressing \(w_1, \cdots, w_k \in V \) in terms of the basis \(B \) we have

\[
\left(\sum_{i=1}^{n} a_{i,1} v_i \right) \wedge \cdots \wedge \left(\sum_{i=1}^{n} a_{i,k} v_i \right) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \det(A(ik)) v_{i_1} \wedge \cdots \wedge v_{i_k}
\]

Example. If \(A := \{w_1, \cdots, w_n\} \) is another basis then \(det(A(nn)) \) is the determinant of the change of basis matrix \(A \rightarrow B \).

The Plücker embedding

\[
i : \ G(k, n) \rightarrow \mathbb{P} \left(\bigwedge^k V \right)
\]

\[
W \mapsto [w_1 \wedge \cdots \wedge w_k]
\]

\(\{w_1, \cdots, w_k\} \) is a basis for \(W \). The map \(i \) is well defined by the preceding relation.
Plücker embedding

We have fixed a basis $B := \{v_1, \cdots, v_n\}$ of V.

The exterior algebra

Expressing $w_1, \cdots, w_k \in V$ in terms of the basis B we have

$$
\left(\sum_{i=1}^{n} a_{i,1} v_i \right) \wedge \cdots \wedge \left(\sum_{i=1}^{n} a_{i,k} v_i \right) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \det(A(ik)) v_{i_1} \wedge \cdots \wedge v_{i_k}
$$

Example. If $A := \{w_1, \cdots, w_n\}$ is another basis then $\det(A(nn))$ is the determinant of the change of basis matrix $A \rightarrow B$.

The Plücker embedding

$$
i : \ G(k, n) \rightarrow \mathbb{P} \left(\bigwedge^k V \right)\\
W \mapsto [w_1 \wedge \cdots \wedge w_k]
$$

$\{w_1, \cdots, w_k\}$ is a basis for W. The map i is well defined by the preceding relation.
Plücker embedding

We have fixed a basis $B := \{v_1, \cdots, v_n\}$ of V.

The exterior algebra

Expressing $w_1, \cdots, w_k \in V$ in terms of the basis B we have

$$\left(\sum_{i=1}^{n} a_{i,1} v_i \right) \wedge \cdots \wedge \left(\sum_{i=1}^{n} a_{i,k} v_i \right) = \sum_{1 \leq i_1 \leq \cdots \leq i_k \leq n} \det(A(ik)) v_{i_1} \wedge \cdots \wedge v_{i_k}$$

Example. If $A := \{w_1, \cdots, w_n\}$ is another basis then $\det(A(nn))$ is the determinant of the change of basis matrix $A \rightarrow B$.

The Plücker embedding

$$i : \quad G(k, n) \rightarrow \mathbb{P} \left(\wedge^k V \right)$$

$$W \quad \mapsto \quad [w_1 \wedge \cdots \wedge w_k]$$

$\{w_1, \cdots, w_k\}$ is a basis for W. The map i is well defined by the preceding relation.
Plücker embedding

We have fixed a basis $B := \{v_1, \cdots, v_n\}$ of V.

The exterior algebra

Expressing $w_1, \cdots, w_k \in V$ in terms of the basis B we have

$$\left(\sum_{i=1}^{n} a_{i,1} v_i \right) \wedge \cdots \wedge \left(\sum_{i=1}^{n} a_{i,k} v_i \right) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \det(A(ik))v_{i_1} \wedge \cdots \wedge v_{i_k}$$

Example. If $A := \{w_1, \cdots, w_n\}$ is another basis then $\det(A(nn))$ is the determinant of the change of basis matrix $A \rightarrow B$.

The Plücker embedding

$$i : \quad G(k, n) \rightarrow \mathbb{P} \left(\bigwedge^k V \right)$$

$$W \quad \mapsto \quad [w_1 \wedge \cdots \wedge w_k]$$

$\{w_1, \cdots, w_k\}$ is a basis for W. The map i is well defined by the preceding relation.
Plücker embedding

We have fixed a basis $B := \{v_1, \cdots, v_n\}$ of V.

The exterior algebra

Expressing $w_1, \cdots, w_k \in V$ in terms of the basis B we have

$$(\sum_{i=1}^{n} a_{i,1} v_i) \wedge \cdots \wedge (\sum_{i=1}^{n} a_{i,k} v_i) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \det(A(ik)) v_{i_1} \wedge \cdots \wedge v_{i_k}$$

Example. If $A := \{w_1, \cdots, w_n\}$ is another basis then $\det(A(nn))$ is the determinant of the change of basis matrix $A \to B$.

The Plücker embedding

$$i : \quad G(k, n) \to \mathbb{P}\left(\wedge^k V\right)$$

$W \quad \mapsto \quad [w_1 \wedge \cdots \wedge w_k]$

$\{w_1, \cdots, w_k\}$ is a basis for W. The map i is well defined by the preceding relation.
Plücker embedding

We have fixed a basis $B := \{v_1, \cdots, v_n\}$ of V.

The exterior algebra

Expressing $w_1, \cdots, w_k \in V$ in terms of the basis B we have

$$\left(\sum_{i=1}^{n} a_{i,1} v_i\right) \wedge \cdots \wedge \left(\sum_{i=1}^{n} a_{i,k} v_i\right) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \det(A(ik)) v_{i_1} \wedge \cdots \wedge v_{i_k}$$

Example. If $A := \{w_1, \cdots, w_n\}$ is another basis then $\det(A(nn))$ is the determinant of the change of basis matrix $A \to B$.

The Plücker embedding

$$i : \quad G(k, n) \rightarrow \mathbb{P} \left(\wedge^k V \right)$$

$$W \quad \mapsto \quad [w_1 \wedge \cdots \wedge w_k]$$

$\{w_1, \cdots, w_k\}$ is a basis for W. The map i is well defined by the preceding relation.
Plücker embedding

We have fixed a basis $B := \{v_1, \cdots, v_n\}$ of V.

The exterior algebra

Expressing $w_1, \cdots, w_k \in V$ in terms of the basis B we have

$$\left(\sum_{i=1}^{n} a_{i,1} v_i \right) \wedge \cdots \wedge \left(\sum_{i=1}^{n} a_{i,k} v_i \right) = \sum_{1 \leq i_1 < \cdots < i_k \leq n} \det(A(ik)) v_{i_1} \wedge \cdots \wedge v_{i_k}$$

Example. If $A := \{w_1, \cdots, w_n\}$ is another basis then $\det(A(nn))$ is the determinant of the change of basis matrix $A \rightarrow B$.

The Plücker embedding

$$i : \quad G(k, n) \to \mathbb{P} \left(\wedge^k V \right)$$

$$W \quad \mapsto \quad [w_1 \wedge \cdots \wedge w_k]$$

$\{w_1, \cdots, w_k\}$ is a basis for W. The map i is well defined by the preceding relation.
Plücker embedding

Lemma. i is injective.

Remark. The Plücker embedding allows us to view $G(k, n)$ as a subset of the projective space $\mathbb{P}^{n \choose k}$.

Plücker coordinates

$$I_{k,n} := \{ \bar{i} := (i_1, \cdots, i_k) \mid 1 \leq i_1 < \cdots i_k \leq n \}$$

the set of coordinates of $\mathbb{P}(\wedge^k V)$. We want to compute $\bar{i}(W)$.

We take $B_W := \{ w_1, \cdots, w_k \}$ a basis of W. The basis B of V gives rise to a matrix $M_W(a_{ij}) \in M_{n \times d}$. We have

$$w_1 \wedge \cdots \wedge w_k = \sum_{\bar{i} \in I_{k,n}} \sum_{\sigma \in S_k} \text{sig}(\sigma)a_{i_1,\sigma(1)} \cdots a_{i_k,\sigma(k)}v_{\bar{i}}.$$

$\bar{i}(W) = \det(M_{\bar{i}})$, with $M_{\bar{i}}$ the $k \times k$ sub-matrix formed from the \bar{i} rows of M_W.
Plücker embedding

Lemma. i is injective.

Remark. The Plücker embedding allows us to view $G(k, n)$ as a subset of the projective space $\mathbb{P}(k)^{-1}$.

Plücker coordinates

\[I_{k,n} := \{ \bar{i} := (i_1, \cdots, i_k) \mid 1 \leq i_1 < \cdots i_k \leq n \} \]

the set of coordinates of $\mathbb{P}(\wedge^k V)$. We want to compute $\bar{i}(W)$.

We take $B_W := \{w_1, \cdots, w_k\}$ a basis of W. The basis B of V gives rise to a matrix $M_W(a_{ij}) \in M_{n \times d}$. We have

\[w_1 \wedge \cdots \wedge w_k = \sum_{\bar{i} \in I_{k,n}} \sum_{\sigma \in S_k} \text{sig}(\sigma) a_{i_1,\sigma(1)} \cdots a_{i_k,\sigma(k)} v_{\bar{i}}. \]

$\bar{i}(W) = det(M_{\bar{i}})$, with $M_{\bar{i}}$ the $k \times k$ sub-matrix formed from the \bar{i} rows of M_W.
Plücker embedding

Lemma. \(i \) is injective.

Remark. The **Plücker embedding** allows us to view \(G(k, n) \) as subset of the projective space \(\mathbb{P}(k)^{n-1} \).

Plücker coordinates

\[
I_{k,n} := \{ \bar{i} := (i_1, \cdots, i_k) \mid 1 \leq i_1 < \cdots i_k \leq n \}
\]

the set of coordinates of \(\mathbb{P}(\wedge^k V) \). We want to compute \(\bar{i}(W) \).

We take \(B_W := \{ w_1, \cdots, w_k \} \) a basis of \(W \). The basis \(B \) of \(V \) gives rise to a matrix \(M_W(a_{ij}) \in M_{n \times d} \). We have

\[
w_1 \wedge \cdots \wedge w_k = \sum_{\bar{i} \in I_{k,n}} \sum_{\sigma \in S_k} \text{sig}(\sigma)a_{i_1, \sigma(1)} \cdots a_{i_k, \sigma(k)} v_{\bar{i}}.
\]

\(\bar{i}(W) = \det(M_{\bar{i}}) \), with \(M_{\bar{i}} \) the \(k \times k \) sub-matrix formed from the \(\bar{i} \) rows of \(M_W \).
Lemma. i is injective.

Remark. The Plücker embedding allows us to view $G(k, n)$ as a subset of the projective space $\mathbb{P}^{\binom{n}{k} - 1}$.

Plücker coordinates

\[I_{k,n} := \{ \tilde{i} := (i_1, \cdots, i_k) \mid 1 \leq i_1 < \cdots i_k \leq n \} \]

the set of coordinates of $\mathbb{P}(\wedge^k V)$. We want to compute $\tilde{i}(W)$.

We take $B_W := \{ w_1, \cdots, w_k \}$ a basis of W. The basis B of V gives rise to a matrix $M_W(a_{ij}) \in M_{n \times d}$. We have

\[w_1 \wedge \cdots \wedge w_k = \sum_{\tilde{i} \in I_{k,n}} \sum_{\sigma \in S_k} \text{sig}(\sigma)a_{i_1,\sigma(1)}\cdots a_{i_k,\sigma(k)}v_{\tilde{i}}. \]

\[\tilde{i}(W) = \det(M_i), \text{ with } M_i \text{ the } k \times k \text{ sub-matrix formed from the } \tilde{i} \text{ rows of } M_W. \]
Lemma. i is injective.

Remark. The Plücker embedding allows us to view $G(k, n)$ as a subset of the projective space \mathbb{P}^n_k. We want to compute $i(W)$.

Plücker coordinates

$$I_{k,n} := \{i := (i_1, \ldots, i_k) \mid 1 \leq i_1 < \cdots < i_k \leq n\}$$

the set of coordinates of $\mathbb{P}(\wedge^k V)$. We want to compute $i(W)$.

We take $B_W := \{w_1, \cdots, w_k\}$ a basis of W. The basis B of V gives rise to a matrix $M_W(a_{ij}) \in M_{n \times d}$. We have

$$w_1 \wedge \cdots \wedge w_k = \sum_{\bar{i} \in I_{k,n}} \sum_{\sigma \in S_k} \text{sig}(\sigma) a_{i_1,\sigma(1)} \cdots a_{i_k,\sigma(k)} v_{\bar{i}}.$$

$$i(W) = \det(M_{\bar{i}}), \text{ with } M_{\bar{i}} \text{ the } k \times k \text{ sub-matrix formed from the } \bar{i} \text{ rows of } M_W.$$
Plücker embedding

Lemma. i is injective.

Remark. The Plücker embedding allows us to view $G(k, n)$ as a subset of the projective space $\mathbb{P}_{(k)}^{n-1}$.

Plücker coordinates

\[I_{k, n} := \{ \bar{i} := (i_1, \cdots, i_k) \mid 1 \leq i_1 < \cdots < i_k \leq n \} \]

the set of coordinates of $\mathbb{P}(\bigwedge^k V)$. We want to compute $\bar{i}(W)$.

We take $B_W := \{w_1, \cdots, w_k\}$ a basis of W. The basis B of V gives rise to a matrix $M_W(a_{ij}) \in M_{n \times d}$. We have

\[w_1 \wedge \cdots \wedge w_k = \sum_{\bar{i} \in I_{k, n}} \sum_{\sigma \in S_k} \text{sig}(\sigma)a_{i_1, \sigma(1)} \cdots a_{i_k, \sigma(k)}v_{\bar{i}}. \]

$\bar{i}(W) = \det(M_i)$, with M_i the $k \times k$ sub-matrix formed from the \bar{i} rows of M_W.
Plücker embedding

Lemma. i is injective.

Remark. The **Plücker embedding** allows us to view $G(k, n)$ as subset of the projective space \mathbb{P}^{n-1}_k.

Plücker coordinates

$$I_{k,n} := \{ \bar{i} := (i_1, \cdots, i_k) \mid 1 \leq i_1 < \cdots i_k \leq n \}$$

the set of coordinates of $\mathbb{P}(\wedge^k V)$. We want to compute $\bar{i}(W)$. We take $B_W := \{ w_1, \cdots, w_k \}$ a basis of W. The basis B of V gives rise to a matrix $M_W(a_{ij}) \in M_{n \times d}$. We have

$$w_1 \wedge \cdots \wedge w_k = \sum_{\bar{i} \in I_{k,n}} \sum_{\sigma \in S_k} \text{sig}(\sigma)a_{i_1,\sigma(1)} \cdots a_{i_k,\sigma(k)}v_{\bar{i}}.$$

$$\bar{i}(W) = \text{det}(M_i),$$

with M_i the $k \times k$ sub-matrix formed from the \bar{i} rows of M_W.
Definition

Plücker embedding

Totally decomposable vectors

Main theorem

Examples

Flag varieties
Totally decomposable vectors

Let us prove know that the Grassmannian is a projective variety.

We will need the following notion.

Definition. Let \(w \in \bigwedge^k V \). We say that \(w \) is **totally decomposable** if we can write \(w = w_1 \wedge \cdots \wedge w_k \), with \(\{w_1, \cdots, w_k\} \subset V \) l.i.

Preparation

Lemma. \([w] \in \mathbb{P}(\bigwedge^k V)\) lies in the image of the Grassmannian under the Plücker embedding if and only if \(w \) is totally decomposable.

\[
(w \in \bigwedge^k V) \quad L_w := \{v \in V \mid v \wedge w = 0 \text{ in } \bigwedge^{k+1} V\}
\]

Lemma. The space \(L_w \) has dimension at most \(k \). With equality occurring if and only if \(w \) is totally decomposable.
Let us prove know that the Grassmannian is a projective variety.

We will need the following notion.

Definition. Let $w \in \bigwedge^k V$. We say that w is **totally decomposable** if we can write $w = w_1 \wedge \cdots \wedge w_k$, with $\{w_1, \cdots, w_k\} \subset V$ l.i.

Preparation

Lemma. $[w] \in \mathbb{P}(\bigwedge^k V)$ lies in the image of the Grassmannian under the Plücker embedding if and only if w is totally decomposable.

$$L_w := \{v \in V \mid v \wedge w = 0 \text{ in } \bigwedge^{k+1} V\}$$

Lemma. The space L_w has dimension at most k. With equality occurring if and only if w is totally decomposable.
Totally decomposable vectors

Let us prove know that the Grassmannian is a projective variety.

We will need the following notion.

Definition. Let $w \in \bigwedge^k V$. We say that w is **totally decomposable** if we can write $w = w_1 \wedge \cdots \wedge w_k$, with $\{w_1, \cdots, w_k\} \subset V_{l.i}$.

Preparation

Lemma. $[w] \in \mathbb{P}(\bigwedge^k V)$ lies in the image of the Grassmannian under the Plücker embedding if and only if w is totally decomposable.

$$(w \in \bigwedge^k V) \quad L_w := \{v \in V \mid v \wedge w = 0 \text{ in } \bigwedge^{k+1} V\}$$

Lemma. The space L_w has dimension at most k. With equality occurring if and only if w is totally decomposable.
Totally decomposable vectors

Let us prove know that the Grassmannian is a projective variety.

We will need the following notion.

Definition. Let \(w \in \bigwedge^k V \). We say that \(w \) is **totally decomposable** if we can write \(w = w_1 \wedge \cdots \wedge w_k \), with \(\{w_1, \cdots, w_k\} \subset V \ l.i. \)

Preparation

Lemma. \([w] \in \mathbb{P}(\bigwedge^k V)\) lies in the image of the Grassmannian under the Plücker embedding if and only if \(w \) is totally decomposable.

\[
(w \in \bigwedge^k V) \quad L_w := \{v \in V \mid v \wedge w = 0 \text{ in } \bigwedge^{k+1} V\}
\]

Lemma. The space \(L_w \) has dimension at most \(k \). With equality occurring if and only if \(w \) is totally decomposable.
Let us prove know that the Grassmannian is a projective variety.

We will need the following notion.

Definition. Let \(w \in \bigwedge^k V \). We say that \(w \) is **totally decomposable** if we can write \(w = w_1 \wedge \cdots \wedge w_k \), with \(\{w_1, \cdots, w_k\} \subset V \) l.i.

Preparation

Lemma. \([w] \in \mathbb{P}(\bigwedge^k V)\) lies in the image of the Grassmannian under the Plücker embedding if and only if \(w \) is totally decomposable.

\[
(w \in \bigwedge V) \quad L_w := \{v \in V \mid v \wedge w = 0 \text{ in } \bigwedge^{k+1} V\}
\]

Lemma. The space \(L_w \) has dimension at most \(k \). With equality occurring if and only if \(w \) is totally decomposable.
Let us prove know that the Grassmannian is a projective variety.

We will need the following notion.

Definition. Let \(w \in \bigwedge^k V \). We say that \(w \) is **totally decomposable** if we can write \(w = w_1 \wedge \cdots \wedge w_k \), with \(\{w_1, \cdots, w_k\} \subset V \) l.i.

Preparation

Lemma. \([w] \in \mathbb{P}(\bigwedge^k V)\) lies in the image of the Grassmannian under the Plücker embedding if and only if \(w \) is totally decomposable.

\[
(w \in \bigwedge^k V) \quad L_w := \{v \in V \mid v \wedge w = 0 \text{ in } \bigwedge^{k+1} V\}
\]

Lemma. The space \(L_w \) has dimension at most \(k \). With equality occurring if and only if \(w \) is totally decomposable.
Definiton

Plücker embedding

Totally decomposable vectors

Main theorem

Examples

Flag varieties
Main theorem

\[\varphi : \wedge^k V \rightarrow \text{Hom}(V, \wedge^{k+1} V) \]

\[w \mapsto \varphi(w) := w \wedge (\bullet) \]

It is a linear map

Theorem. \(i(G(k, n)) \subset \mathbb{P}(\wedge^k V)\) is a projective variety.

Proof. First of all

\[[w] \in i(G(k, n)) \iff \text{rank}(\varphi(w)) = n - k \]

- The matrix \(A(w)\) of \(\varphi(w)\) has homogeneous entries of degree 1 in the coordinates
- \(G(k, n)\) is the vanish of all \((n - k - 1) \times (n - k - 1)\)-minors of \(A(w)\).
Main theorem

\[\varphi : \bigwedge^k V \rightarrow \text{Hom} \left(V, \bigwedge^{k+1} V \right) \]
\[w \mapsto \varphi(w) := w \wedge (\bullet) \]

It is a linear map

Theorem. \(i(G(k, n)) \subset \mathbb{P}(\bigwedge^k V) \) is a projective variety.

Proof. First of all

\[[w] \in i(G(k, n)) \iff \text{rank}(\varphi(w)) = n - k \]

- The matrix \(A(w) \) of \(\varphi(w) \) has homogeneous entries of degree 1 in the coordinates
- \(G(k, n) \) is the vanish of all \((n - k - 1) \times (n - k - 1)\)-minors of \(A(w) \).
Main theorem

\[\varphi : \wedge^k V \rightarrow \text{Hom} \left(V, \wedge^{k+1} V \right) \]

\[w \mapsto \varphi(w) := w \wedge (\bullet) \]

It is a linear map

Theorem. \(i(G(k, n)) \subset \mathbb{P}(\wedge^k V) \) is a projective variety.

Proof. First of all

\[[w] \in i(G(k, n)) \Leftrightarrow \text{rank}(\varphi(w)) = n - k \]

- The matrix \(A(w) \) of \(\varphi(w) \) has homogeneous entries of degree 1 in the coordinates
- \(G(k, n) \) is the vanish of all \((n - k - 1) \times (n - k - 1)\)-minors of \(A(w) \).
Main theorem

\[\varphi : \bigwedge^k V \rightarrow \text{Hom} \left(V, \bigwedge^{k+1} V \right) \]
\[w \mapsto \varphi(w) := w \wedge (\bullet) \]

It is a linear map

Theorem. \(i(G(k, n)) \subset \mathbb{P}(\bigwedge^k V) \) is a projective variety.

Proof. First of all

\[[w] \in i(G(k, n)) \iff \text{rank}(\varphi(w)) = n - k \]

- The matrix \(A(w) \) of \(\varphi(w) \) has homogeneous entries of degree 1 in the coordinates

- \(G(k, n) \) is the vanish of all \((n - k - 1) \times (n - k - 1)\)-minors of \(A(w) \).
Main theorem

$$\varphi : \wedge^k V \to \text{Hom} \left(V, \wedge^{k+1} V \right)$$
$$w \mapsto \varphi(w) := w \wedge (\bullet)$$

It is a linear map

Theorem. \(i(G(k, n)) \subset \mathbb{P}(\wedge^k V)\) is a projective variety.

Proof. First of all

\([w] \in i(G(k, n)) \iff \text{rank}(\varphi(w)) = n - k\)

- The matrix \(A(w)\) of \(\varphi(w)\) has homogeneous entries of degree 1 in the coordinates
- \(G(k, n)\) is the vanish of all \((n - k - 1) \times (n - k - 1)\)-minors of \(A(w)\).
Main theorem

\[\varphi : \bigwedge^k V \rightarrow \text{Hom} \left(V, \bigwedge^{k+1} V \right) \]

\[w \mapsto \varphi(w) := w \wedge (\bullet) \]

It is a linear map

Theorem. \(i(G(k, n)) \subset \mathbb{P}(\bigwedge^k V) \) is a projective variety.

Proof. First of all

\[[w] \in i(G(k, n)) \iff \text{rank}(\varphi(w)) = n - k \]

- The matrix \(A(w) \) of \(\varphi(w) \) has homogeneous entries of degree 1 in the coordinates

- \(G(k, n) \) is the vanish of all \((n - k - 1) \times (n - k - 1)\)-minors of \(A(w) \).
Main theorem

\[\varphi : \bigwedge^k V \rightarrow \text{Hom} \left(V, \bigwedge^{k+1} V \right) \]

\[w \mapsto \varphi(w) := w \wedge (\bullet) \]

It is a linear map

Theorem. \(i(G(k, n)) \subset \mathbb{P}(\bigwedge^k V) \) is a projective variety.

Proof. First of all

\[[w] \in i(G(k, n)) \iff \text{rank}(\varphi(w)) = n - k \]

- The matrix \(A(w) \) of \(\varphi(w) \) has homogeneous entries of degree 1 in the coordinates
- \(G(k, n) \) is the vanish of all \((n - k - 1) \times (n - k - 1)\)-minors of \(A(w) \).
Main theorem

\[\varphi : \wedge^k V \rightarrow \text{Hom} \left(V, \wedge^{k+1} V \right) \]
\[w \mapsto \varphi(w) := w \wedge (\bullet) \]

It is a linear map

Theorem. \(i(G(k, n)) \subset \mathbb{P}(\wedge^k V) \) is a projective variety.

Proof. First of all

\[[w] \in i(G(k, n)) \iff \text{rank} (\varphi(w)) = n - k \]

- The matrix \(A(w) \) of \(\varphi(w) \) has homogeneous entries of degree 1 in the coordinates
- \(G(k, n) \) is the vanish of all \((n - k - 1) \times (n - k - 1) \)-minors of \(A(w) \).
Main theorem

$$\varphi : \bigwedge^k V \to \text{Hom} \left(V, \bigwedge^{k+1} V \right)$$

$$w \mapsto \varphi(w) := w \wedge (\bullet)$$

It is a linear map.

Theorem. $i(G(k, n)) \subset \mathbb{P}(\bigwedge^k V)$ is a projective variety.

Proof. First of all

$$[w] \in i(G(k, n)) \quad \Leftrightarrow \quad \text{rank}(\varphi(w)) = n - k$$

- The matrix $A(w)$ of $\varphi(w)$ has homogeneous entries of degree 1 in the coordinates.
- $G(k, n)$ is the vanish of all $(n - k - 1) \times (n - k - 1)$-minors of $A(w)$.
Definition

Plücker embedding

Totally decomposable vectors

Main theorem

Examples

Flag varieties
Examples

- The Plücker embedding of $G(1, V)$ maps a linear subspace

$$W = \text{span}(\lambda_1 v_1 + \cdots + \lambda_n v_n) \quad \quad (\lambda_1 : \cdots : \lambda_n) \in \mathbb{P}^{n-1}$$

As expected $G(1, V) = \mathbb{P}^{n-1}$.

- $\dim(V) = 3$ and $W = \text{span}(v_1 + v_2, v_1 + v_3) \in G(2, V)$. Since

$$\begin{align*}
(v_1 + v_2) \wedge (v_1 + v_3) &= -v_1 \wedge v_2 + v_1 \wedge v_3 + v_2 \wedge v_3 \\
\end{align*}$$

the Plücker coordinates of W in \mathbb{P}^2 are given by the vector $(-1 : 1 : 1)$. Alternatively,

$$M_W = \begin{pmatrix}
1 & 1 \\
1 & 0 \\
0 & 1
\end{pmatrix}$$

and $(-1:1:1)$ keeps the 2×2-minors of M_W.
Examples

- The Plücker embedding of $G(1, V)$ maps a linear subspace

\[W = \text{span}(\lambda_1 v_1 + \cdots + \lambda_n v_n) \quad (\lambda_1 : \cdots : \lambda_n) \in \mathbb{P}^{n-1} \]

As expected $G(1, V) = \mathbb{P}^{n-1}$.

- $\dim(V) = 3$ and $W = \text{span}(v_1 + v_2, v_1 + v_3) \in G(2, V)$. Since

\[
(v_1 + v_2) \wedge (v_1 + v_3) = -v_1 \wedge v_2 + v_1 \wedge v_3 + v_2 \wedge v_3
\]

the Plücker coordinates of W in \mathbb{P}^2 are given by the vector $(-1 : 1 : 1)$. Alternatively,

\[
M_W = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

and $(-1:1:1)$ keeps the 2×2-minors of M_W.
Examples

- The Plücker embedding of $G(1, V)$ maps a linear subspace

$$W = \text{span}(\lambda_1 v_1 + \cdots + \lambda_n v_n) \quad (\lambda_1 : \cdots : \lambda_n) \in \mathbb{P}^{n-1}$$

As expected $G(1, V) = \mathbb{P}^{n-1}$.

- $\dim(V) = 3$ and $W = \text{span}(v_1 + v_2, v_1 + v_3) \in G(2, V)$. Since

$$\textbf{(v}_1 + v_2) \land (v_1 + v_3) = -v_1 \land v_2 + v_1 \land v_3 + v_2 \land v_3$$

the Plücker coordinates of W in \mathbb{P}^2 are given by the vector $(-1 : 1 : 1)$. Alternatively,

$$M_W = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

and $(-1:1:1)$ keeps the 2×2-minors of M_W.

Examples

- The Plücker embedding of $G(1, V)$ maps a linear subspace

$$W = \text{span}(\lambda_1 v_1 + \cdots + \lambda_n v_n) \quad (\lambda_1 : \cdots : \lambda_n) \in \mathbb{P}^{n-1}$$

As expected $G(1, V) = \mathbb{P}^{n-1}$.

- $\dim(V) = 3$ and $W = \text{span}(v_1 + v_2, v_1 + v_3) \in G(2, V)$. Since

$$(v_1 + v_2) \land (v_1 + v_3) = -v_1 \land v_2 + v_1 \land v_3 + v_2 \land v_3$$

the Plücker coordinates of W in \mathbb{P}^2 are given by the vector $(-1 : 1 : 1)$. Alternatively,

$$M_W = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

and $(-1:1:1)$ keeps the 2×2-minors of M_W.
Examples

- The Plücker embedding of $G(1, V)$ maps a linear subspace

$$W = \text{span}(\lambda_1 v_1 + \cdots + \lambda_n v_n) \quad (\lambda_1 : \cdots : \lambda_n) \in \mathbb{P}^{n-1}$$

As expected $G(1, V) = \mathbb{P}^{n-1}$.

- $\dim(V) = 3$ and $W = \text{span}(v_1 + v_2, v_1 + v_3) \in G(2, V)$. Since

$$(v_1 + v_2) \wedge (v_1 + v_3) = -v_1 \wedge v_2 + v_1 \wedge v_3 + v_2 \wedge v_3$$

the Plücker coordinates of W in \mathbb{P}^2 are given by the vector $(-1 : 1 : 1)$. Alternatively,

$$M_W = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

and $(-1:1:1)$ keeps the 2×2-minors of M_W.
Examples

- The Plücker embedding of $G(1, V)$ maps a linear subspace

$$W = \text{span}(\lambda_1 v_1 + \cdots + \lambda_n v_n) \quad (\lambda_1 : \cdots : \lambda_n) \in \mathbb{P}^{n-1}$$

As expected $G(1, V) = \mathbb{P}^{n-1}$.

- $\dim(V) = 3$ and $W = \text{span}(v_1 + v_2, v_1 + v_3) \in G(2, V)$. Since

$$(v_1 + v_2) \wedge (v_1 + v_3) = -v_1 \wedge v_2 + v_1 \wedge v_3 + v_2 \wedge v_3$$

the Plücker coordinates of W in \mathbb{P}^2 are given by the vector $(-1 : 1 : 1)$. Alternatively,

$$M_W = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

and $(-1:1:1)$ keeps the 2×2-minors of M_W.
Examples

- The Plücker embedding of $G(1, V)$ maps a linear subspace

$$W = \text{span}(\lambda_1 v_1 + \cdots + \lambda_n v_n) \quad (\lambda_1 : \cdots : \lambda_n) \in \mathbb{P}^{n-1}$$

As expected $G(1, V) = \mathbb{P}^{n-1}$.

- $\dim(V) = 3$ and $W = \text{span}(v_1 + v_2, v_1 + v_3) \in G(2, V)$. Since

$$(v_1 + v_2) \wedge (v_1 + v_3) = -v_1 \wedge v_2 + v_1 \wedge v_3 + v_2 \wedge v_3$$

the Plücker coordinates of W in \mathbb{P}^2 are given by the vector $(-1:1:1)$. Alternatively,

$$M_W = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 1 \end{pmatrix}$$

and $(-1:1:1)$ keeps the 2×2-minors of M_W.
Let $\dim(V) = 4$.

The Plücker coordinates are the 2×2-minors

$$p_{ij} := \det \begin{pmatrix} x_i & y_i \\ x_j & y_j \end{pmatrix} = x_i y_j - x_j y_i$$

of the 4×2-matrix

$$M = \begin{pmatrix} x_i & y_i \end{pmatrix}_{0 \leq i \leq 3}$$

The Plücker embedding is defined by

$$i : \ G(2, 4) \to \mathbb{P}^5 \quad W \mapsto (p_{01} : p_{02} : p_{03} : p_{23} : p_{31} : p_{12})$$

and the Plücker coordinates satisfy the **quadratic Plücker relation**

$$p_{01} p_{23} + p_{02} p_{31} + p_{03} p_{12} = 0.$$
Let \(\dim(V) = 4 \).

The Plücker coordinates are the \(2 \times 2 \)-minors

\[
p_{ij} := \det \begin{pmatrix} x_i & y_i \\ x_j & y_j \end{pmatrix} = x_i y_j - x_j y_i
\]

of the \(4 \times 2 \)-matrix

\[
M = \begin{pmatrix} x_i & y_i \end{pmatrix}_{0 \leq i \leq 3}
\]

The Plücker embedding is defined by

\[
i : \quad G(2, 4) \rightarrow \mathbb{P}^5 \\
W \mapsto (p_{01} : p_{02} : p_{03} : p_{23} : p_{31} : p_{12})
\]

and the Plücker coordinates satisfy the quadratic Plücker relation

\[
p_{01} p_{23} + p_{02} p_{31} + p_{03} p_{12} = 0.
\]
Let $\dim(V) = 4$.

The Plücker coordinates are the 2×2-minors

$$p_{ij} := \det \begin{pmatrix} x_i & y_i \\ x_j & y_j \end{pmatrix} = x_i y_j - x_j y_i$$

of the 4×2-matrix

$$M = \begin{pmatrix} x_i & y_i \end{pmatrix}_{0 \leq i \leq 3}$$

The Plücker embedding is defined by

$$i : \ G(2, 4) \rightarrow \mathbb{P}^5$$

$$W \mapsto (p_{01} : p_{02} : p_{03} : p_{23} : p_{31} : p_{12})$$

and the Plücker coordinates satisfy the **quadratic Plücker relation**

$$p_{01} p_{23} + p_{02} p_{31} + p_{03} p_{12} = 0.$$
Plücker quadratic

Let \(\dim(V) = 4 \).

The Plücker coordinates are the \(2 \times 2 \)-minors

\[
p_{ij} := \det \begin{pmatrix} x_i & y_i \\ x_j & y_j \end{pmatrix} = x_i y_j - x_j y_i
\]

of the \(4 \times 2 \)-matrix

\[
M = \begin{pmatrix} x_i & y_i \end{pmatrix}_{0 \leq i \leq 3}
\]

The Plücker embedding is defined by

\[
i : \quad G(2, 4) \quad \rightarrow \quad \mathbb{P}^5
\]

\[
W \quad \mapsto \quad (p_{01} : p_{02} : p_{03} : p_{23} : p_{31} : p_{12})
\]

and the Plücker coordinates satisfy the **quadratic Plücker relation**

\[
p_{01} p_{23} + p_{02} p_{31} + p_{03} p_{12} = 0.
\]
Let $\dim(V) = 4$.

The Plücker coordinates are the 2×2-minors

$$p_{ij} := \det \begin{pmatrix} x_i & y_i \\ x_j & y_j \end{pmatrix} = x_i y_j - x_j y_i$$

of the 4×2-matrix

$$M = \begin{pmatrix} x_i & y_i \end{pmatrix}_{0 \leq i \leq 3}$$

The Plücker embedding is defined by

$$i : \ G(2, 4) \to \mathbb{P}^5$$

$$W \mapsto (p_{01} : p_{02} : p_{03} : p_{23} : p_{31} : p_{12})$$

and the Plücker coordinates satisfy the **quadratic Plücker relation**

$$p_{01} p_{23} + p_{02} p_{31} + p_{03} p_{12} = 0.$$
Let $\dim(V) = 4$.

The Plücker coordinates are the 2×2-minors

$$p_{ij} := \det \begin{pmatrix} x_i & y_i \\ x_j & y_j \end{pmatrix} = x_i y_j - x_j y_i$$

of the 4×2-matrix

$$M = \begin{pmatrix} x_i & y_i \end{pmatrix}_{0 \leq i \leq 3}$$

The Plücker embedding is defined by

$$i : \ G(2, 4) \to \mathbb{P}^5$$

$$W \mapsto (p_{01} : p_{02} : p_{03} : p_{23} : p_{31} : p_{12})$$

and the Plücker coordinates satisfy the **quadratic Plücker relation**

$$p_{01} p_{23} + p_{02} p_{31} + p_{03} p_{12} = 0.$$
Let \(\dim(V) = 4 \).

The Plücker coordinates are the \(2 \times 2 \)-minors

\[p_{ij} := \det \begin{pmatrix} x_i & y_i \\ x_j & y_j \end{pmatrix} = x_i y_j - x_j y_i \]

of the \(4 \times 2 \)-matrix

\[M = \begin{pmatrix} x_i & y_i \end{pmatrix}_{0 \leq i \leq 3} \]

The Plücker embedding is defined by

\[i : G(2, 4) \to \mathbb{P}^5 \]

\[W \mapsto (p_{01} : p_{02} : p_{03} : p_{23} : p_{31} : p_{12}) \]

and the Plücker coordinates satisfy the \textbf{quadratic Plücker relation}

\[p_{01} p_{23} + p_{02} p_{31} + p_{03} p_{12} = 0. \]
Plücker quadratic: bijection

Let \((q_{01}:q_{02}:q_{03}:q_{23}:q_{31}:q_{12}) \in \mathbb{P}^5\). If \(q_{01} \neq 0\)

\[
M_W = \begin{pmatrix}
q_{01} & 0 \\
0 & q_{01} \\
-q_{12} & q_{02} \\
q_{31} & q_{03}
\end{pmatrix}
\]

has rank 2 (defining a line \(W\) in \(\mathbb{P}^3\)).

Key point:

If the coordinates \(q_{ij}\) satisfy the quadratic relation, then they are the coordinates of \(W\).

We have proved

\[
G(2, 4) = V(p_{01}p_{23} + p_{02}p_{31} + p_{03}p_{12}) \subset \mathbb{P}^5
\]

is the Plücker quadratic.
Plücker quadratic: bijection

Let \((q_{01} : q_{02} : q_{03} : q_{23} : q_{31} : q_{12}) \in \mathbb{P}^5\). If \(q_{01} \neq 0\)

\[
M_W = \begin{pmatrix}
q_{01} & 0 \\
0 & q_{01} \\
-q_{12} & q_{02} \\
q_{31} & q_{03}
\end{pmatrix}
\]

has rank 2 (defining a line \(W\) in \(\mathbb{P}^3\)).

Key point:

If the coordinates \(q_{ij}\) satisfy the quadratic relation, then they are the coordinates of \(W\).

We have proved

\[
G(2, 4) = V(p_{01}p_{23} + p_{02}p_{31} + p_{03}p_{12}) \subset \mathbb{P}^5
\]

is the Plücker quadratic.
Plücker quadratic: bijection

Let \((q_{01} : q_{02} : q_{03} : q_{23} : q_{31} : q_{12}) \in \mathbb{P}^5\). If \(q_{01} \neq 0\)

\[
M_W = \begin{pmatrix}
q_{01} & 0 \\
0 & q_{01} \\
-q_{12} & q_{02} \\
q_{31} & q_{03}
\end{pmatrix}
\]

has rank 2 (defining a line \(W\) in \(\mathbb{P}^3\)).

Key point:

If the coordinates \(q_{ij}\) satisfy the quadratic relation, then they are the coordinates of \(W\).

We have proved

\[
G(2, 4) = V(p_{01}p_{23} + p_{02}p_{31} + p_{03}p_{12}) \subset \mathbb{P}^5
\]

is the Plücker quadratic.
Plücker quadratic: bijection

Let \((q_{01} : q_{02} : q_{03} : q_{23} : q_{31} : q_{12}) \in \mathbb{P}^5\). If \(q_{01} \neq 0\)

\[
\begin{pmatrix}
q_{01} & 0 \\
0 & q_{01} \\
-q_{12} & q_{02} \\
q_{31} & q_{03}
\end{pmatrix}
\]

has rank 2 (defining a line \(W\) in \(\mathbb{P}^3\)).

Key point:

If the coordinates \(q_{ij}\) satisfy the quadratic relation, then they are the coordinates of \(W\).

We have proved

\[
G(2, 4) = V(p_{01}p_{23} + p_{02}p_{31} + p_{03}p_{12}) \subset \mathbb{P}^5
\]

is the Plücker quadratic.
Plücker quadratic: bijection

Let \((q_{01} : q_{02} : q_{03} : q_{23} : q_{31} : q_{12}) \in \mathbb{P}^5\). If \(q_{01} \neq 0\)

\[
M_W = \begin{pmatrix} q_{01} & 0 \\ 0 & q_{01} \\ -q_{12} & q_{02} \\ q_{31} & q_{03} \end{pmatrix}
\]

has rank 2 (defining a line \(W\) in \(\mathbb{P}^3\)).

Key point:

If the coordinates \(q_{ij}\) satisfy the quadratic relation, then they are the coordinates of \(W\).

We have proved

\[
G(2, 4) = V(p_{01}p_{23} + p_{02}p_{31} + p_{03}p_{12}) \subset \mathbb{P}^5
\]

is the **Plücker quadratic**.
Definition

Plücker embedding

Totally decomposable vectors

Main theorem

Examples

Flag varieties
Flags

\[\dim_{\mathbb{C}}(V) = n. \]

Definition. A flag in \(V \) is a strictly increasing sequence of subspaces

\[0 \subset V_1 \subset \cdots \subset V_l \subset V. \]

The **signature** of the flag is \((\dim(V_1), \cdots, \dim(V_l))\).

For every sequence of integers

\[a := 0 < a_1 < \cdots < a_l < n \]

We let

\[\mathcal{F}(a; n) := \{ 0 \subset V_1 \subset \cdots \subset V_l \subset V \mid \dim(V_i) = a_i \} \]
Definition. A flag in V is a strictly increasing sequence of subspaces

$$0 \subset V_1 \subset \cdots \subset V_l \subset V.$$

The signature of the flag is $(\dim(V_1), \cdots, \dim(V_l))$.

For every sequence of integers

$$a := 0 < a_1 < \cdots < a_l < n$$

We let

$$\mathcal{F}(a; n) := \{0 \subset V_1 \subset \cdots \subset V_l \subset V \mid \dim(V_i) = a_i\}$$
Definition. A **flag** in V is a strictly increasing sequence of subspaces

$$0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_i \subsetneq V.$$

The **signature** of the flag is $(\dim(V_1), \cdots, \dim(V_i))$.

For every sequence of integers

$$a := 0 < a_1 < \cdots < a_i < n$$

We let

$$F(a; n) := \{0 \subsetneq V_1 \subsetneq \cdots \subsetneq V_i \subsetneq V \mid \dim(V_i) = a_i\}$$
Flags

\[\dim_{\mathbb{C}}(V) = n. \]

Definition. A **flag** in \(V \) is a strictly increasing sequence of subspaces

\[0 \subset V_1 \subset \cdots \subset V_l \subset V. \]

The **signature** of the flag is \((\dim(V_1), \cdots, \dim(V_l))\).

For every sequence of integers

\[a := 0 < a_1 < \cdots < a_l < n \]

We let

\[\mathcal{F}(a; n) := \{ 0 \subset V_1 \subset \cdots \subset V_l \subset V \mid \dim(V_i) = a_i \} \]
Flags

\[\dim_{\mathbb{C}}(V) = n. \]

Definition. A **flag** in \(V \) is a strictly increasing sequence of subspaces

\[0 \subset V_1 \subset \cdots \subset V_l \subset V. \]

The **signature** of the flag is \((\dim(V_1), \cdots , \dim(V)_l) \).

For every sequence of integers

\[a := 0 < a_1 < \cdots < a_l < n \]

We let

\[\mathcal{F}(a; n) := \{ 0 \subset V_1 \subset \cdots \subset V_l \subset V \mid \dim(V_i) = a_i \} \]
Flag varieties

Remark. $\mathbb{F}(a_1; n) = G(a_1, n)$ is a projective variety.

Proposition. $\mathbb{F}(a; n)$ is a Zariski closed subset of $\prod_{i=1}^{l} G(a_i, n)$.

Proof.
- The case $a \in \mathbb{Z}_{>0}$ is the preceding remark.

 Reduction to $a \in \mathbb{Z}_{>0}^2$.

- Let

 $$\pi_{ij} : G(a_1, n) \times \cdots G(a_l) \to G(a_i, n) \times G(a_j, n) \times G(a_j, n)$$

 be the projection.

 $$\mathbb{F}(a; n) = \bigcap_{1 \leq i < j \leq l < n} \pi_{ij}^{-1}(\mathbb{F}(a_i, a_j; n))$$

 It is enough to consider $l = 2$.
Flag varieties

Remark. $\mathbb{F}(a_1; n) = G(a_1, n)$ is a projective variety.

Proposition. $\mathbb{F}(a; n)$ is a Zariski closed subset of $\prod_{i=1}^l G(a_i, n)$.

Proof.
- The case $a \in \mathbb{Z}_{>0}$ is the preceding remark.

Reduction to $a \in \mathbb{Z}_{>0}$.

- Let $\pi_{ij} : G(a_1, n) \times \cdots \times G(a_l) \to G(a_i, n) \times G(a_j, n)$ be the projection.

$$\mathbb{F}(a; n) = \bigcap_{1 \leq i < j \leq l < n} \pi_{ij}^{-1}(\mathbb{F}(a_i, a_j; n))$$

It is enough to consider $l = 2$.
Flag varieties

Remark. $\mathbb{F}(a_1; n) = G(a_1, n)$ is a projective variety.

Proposition. $\mathbb{F}(a; n)$ is a Zariski closed subset of $\prod_{i=1}^l G(a_i, n)$.

Proof.

- The case $a \in \mathbb{Z}_{>0}$ is the preceding remark.

Reduction to $a \in \mathbb{Z}_{>0}^2$.

- Let

$$\pi_{ij} : G(a_1, n) \times \cdots G(a_l) \to G(a_i, n) \times G(a_j, n) \times G(a_j, n)$$

be the projection.

$$\mathbb{F}(a; n) = \bigcap_{1 \leq i < j \leq l < n} \pi_{ij}^{-1}(\mathbb{F}(a_i, a_j; n))$$

It is enough to consider $l = 2$.
Flag varieties

Remark. \(\mathbb{F}(a_1; n) = G(a_1, n) \) is a projective variety.

Proposition. \(\mathbb{F}(a; n) \) is a Zariski closed subset of \(\prod_{i=1}^{l} G(a_i, n) \).

Proof.

- The case \(a \in \mathbb{Z}_{>0} \) is the preceding remark.

Reduction to \(a \in \mathbb{Z}_{>0} \).

- Let

\[
\pi_{ij} : G(a_1, n) \times \cdots G(a_l) \to G(a_i, n) \times G(a_j, n) \times G(a_j, n)
\]

be the projection.

\[
\mathbb{F}(a; n) = \bigcap_{1 \leq i < j \leq l < n} \pi_{ij}^{-1}(\mathbb{F}(a_i, a_j; n))
\]

It is enough to consider \(l = 2 \).
Flag varieties

Remark. $\mathbb{F}(a_1; n) = G(a_1, n)$ is a projective variety.

Proposition. $\mathbb{F}(a; n)$ is a Zariski closed subset of $\prod_{i=1}^{l} G(a_i, n)$.

Proof.

- The case $\underline{a} \in \mathbb{Z}_{>0}$ is the preceding remark.

Reduction to $\underline{a} \in \mathbb{Z}_{>0}^2$.

- Let

$$\pi_{ij} : G(a_1, n) \times \cdots \times G(a_l) \to G(a_i, n) \times G(a_j, n) \times G(a_j, n)$$

be the projection.

$$\mathbb{F}(a; n) = \bigcap_{1 \leq i < j \leq l < n} \pi_{ij}^{-1}(\mathbb{F}(a_i, a_j; n))$$

It is enough to consider $l = 2$.
Flag varieties

Remark. $\mathbb{F}(a_1; n) = G(a_1, n)$ is a projective variety.

Proposition. $\mathbb{F}(a; n)$ is a Zariski closed subset of $\prod_{i=1}^{l} G(a_i, n)$.

Proof.

- The case $a \in \mathbb{Z}_{>0}$ is the preceding remark.

Reduction to $a \in \mathbb{Z}_{>0}$.

- Let

$$\pi_{ij}: G(a_1, n) \times \cdots G(a_l) \rightarrow G(a_i, n) \times G(a_j, n) \times G(a_j, n)$$

be the projection.

$$\mathbb{F}(a; n) = \bigcap_{1 \leq i < j \leq l < n} \pi_{ij}^{-1}(\mathbb{F}(a_i, a_j; n))$$

It is enough to consider $l = 2$.

Flag varieties

Remark. $\mathbb{F}(a_1; n) = G(a_1, n)$ is a projective variety.

Proposition. $\mathbb{F}(a; n)$ is a Zariski closed subset of $\prod_{i=1}^{l} G(a_i, n)$.

Proof.
- The case $a \in \mathbb{Z}_{>0}$ is the preceding remark.
- Reduction to $a \in \mathbb{Z}_{>0}$.
- Let

$$
\pi_{ij} : G(a_1, n) \times \cdots G(a_l) \to G(a_i, n) \times G(a_j, n) \times G(a_j, n)
$$

be the projection.

$$
\mathbb{F}(a; n) = \bigcap_{1 \leq i < j \leq l < n} \pi_{ij}^{-1}(\mathbb{F}(a_i, a_j; n))
$$

It is enough to consider $l = 2$.

Flag varieties

Remark. $\mathbb{F}(a_1; n) = G(a_1, n)$ is a projective variety.

Proposition. $\mathbb{F}(a; n)$ is a Zariski closed subset of $\prod_{i=1}^{l} G(a_i, n)$.

Proof.

- The case $a \in \mathbb{Z}_{>0}$ is the preceding remark.

 Reduction to $a \in \mathbb{Z}_{>0}$.

- Let

 $$\pi_{ij} : G(a_1, n) \times \cdots \times G(a_l) \to G(a_i, n) \times G(a_j, n) \times G(a_j, n)$$

 be the projection.

 $$\mathbb{F}(a; n) = \bigcap_{1 \leq i < j \leq l < n} \pi_{ij}^{-1}(\mathbb{F}(a_i, a_j; n))$$

 It is enough to consider $l = 2$.
Flag varieties

Let $r < s$ and

$$(\text{span}(u_1, \cdots, u_r), \text{span}(w_1, \cdots, w_s)) \in G(r, n) \times G(s, n).$$

If $u := u_1 \wedge \cdots \wedge u_r$, $w := w_1 \wedge \cdots \wedge w_s$, and

$$\varphi \oplus \varphi : \bigwedge^r V \oplus \bigwedge^s W \rightarrow \text{Hom} \left(V, \bigwedge^{r+1} V \oplus \bigwedge^{s+1} V \right),$$

then $\ker(\varphi_u \oplus \varphi_w) = U \cap W$

$U \subset W \Leftrightarrow \text{rank}(\varphi_u \oplus \varphi_w) = n - r$

- The $(n - r + 1) \times (n - r + 1)$-minors give polynomials conditions for $\mathbb{F}(r, s; n)$.
Flag varieties

Let \(r < s \) and

\[
\left(\text{span}(u_1, \cdots, u_r), \text{span}(w_1, \cdots, w_s) \right) \in G(r, n) \times G(s, n).
\]

If \(u := u_1 \wedge \cdots \wedge u_r, w := w_1 \wedge \cdots \wedge w_s \), and

\[
\varphi \oplus \varphi : \bigwedge^r V \oplus \bigwedge^s W \to \text{Hom} \left(V, \bigwedge^{r+1} V \oplus \bigwedge^{s+1} V \right)
\]

\[
\begin{align*}
\varphi_{v_1} & \oplus \varphi_{v_2} & \mapsto & \varphi_{v_1} \wedge (\bullet) \oplus \varphi_{v_2} \wedge (\bullet),
\end{align*}
\]

then \(\ker(\varphi_u \oplus \varphi_w) = U \cap W \)

\[
U \subsetneq W \iff \text{rank}(\varphi_u \oplus \varphi_w) = n - r
\]

- The \((n - r + 1) \times (n - r + 1)\)-minors give polynomials conditions for \(\mathbb{F}(r, s; n) \).
Flag varieties

Let $r < s$ and

$$ (\text{span}(u_1, \cdots, u_r), \text{span}(w_1, \cdots, w_s)) \in G(r, n) \times G(s, n). $$

If $u := u_1 \wedge \cdots \wedge u_r$, $w := w_1 \wedge \cdots \wedge w_s$, and

$$ \varphi \oplus \varphi : \bigwedge^r V \oplus \bigwedge^s W \to \text{Hom} \left(V, \bigwedge^{r+1} V \oplus \bigwedge^{s+1} V \right) $$

$$ v_1 \oplus v_2 \

\varphi_{v_1} \oplus \varphi_{v_2} $$

then $\ker(\varphi_u \oplus \varphi_w) = U \cap W$

$$ U \subsetneq W \iff \text{rank}(\varphi_u \oplus \varphi_w) = n - r $$

- The $(n - r + 1) \times (n - r + 1)$-minors give polynomials conditions for $\mathbb{F}(r, s; n)$.

\diamondsuit
Flag varieties

Let $r < s$ and

$$(\text{span}(u_1, \ldots, u_r), \text{span}(w_1, \ldots, w_s)) \in G(r, n) \times G(s, n).$$

If $u := u_1 \wedge \cdots \wedge u_r$, $w := w_1 \wedge \cdots \wedge w_s$, and

$$\varphi \oplus \varphi : \bigwedge^r V \oplus \bigwedge^s W \to \text{Hom} \left(V, \bigwedge^{r+1} V \oplus \bigwedge^{s+1} V \right)$$

$$\left\{ \varphi_{v_1} \wedge (\bullet) \oplus \varphi_{v_2} \wedge (\bullet) \right\}$$

then $\ker(\varphi_u \oplus \varphi_w) = U \cap W$.

$U \subset W \iff \text{rank}(\varphi_u \oplus \varphi_w) = n - r$

- The $(n - r + 1) \times (n - r + 1)$-minors give polynomials conditions for $\mathbb{F}(r, s; n)$.
Flag varieties

Let \(r < s \) and

\[
(\text{span}(u_1, \cdots, u_r), \text{span}(w_1, \cdots, w_s)) \in G(r, n) \times G(s, n).
\]

If \(u := u_1 \wedge \cdots \wedge u_r, w := w_1 \wedge \cdots \wedge w_s \), and

\[
\varphi \oplus \varphi : \bigwedge^r V \oplus \bigwedge^s W \to \text{Hom} \left(V, \bigwedge^{r+1} V \oplus \bigwedge^{s+1} V \right)
\]

\[
\begin{align*}
\varphi_{v_1} \oplus \varphi_{v_2} & \mapsto \\
\varphi_{v_1} \wedge (\bullet) \oplus \varphi_{v_2} \wedge (\bullet),
\end{align*}
\]

then \(\ker(\varphi_u \oplus \varphi_w) = U \cap W \)

\[
U \subset W \iff \text{rank}(\varphi_u \oplus \varphi_w) = n - r
\]

- The \((n - r + 1) \times (n - r + 1)\)-minors give polynomials conditions for \(\mathbb{F}(r, s; n) \).
Flag varieties

Let \(r < s \) and

\[
(\text{span}(u_1, \cdots, u_r), \text{span}(w_1, \cdots, w_s)) \in G(r, n) \times G(s, n).
\]

If \(u := u_1 \wedge \cdots \wedge u_r, \ w := w_1 \wedge \cdots \wedge w_s \), and

\[
\varphi \oplus \varphi : \bigwedge^r V \oplus \bigwedge^s W \to \text{Hom} \left(\bigwedge^r V \oplus \bigwedge^{r+1} V \oplus \bigwedge^{s+1} V \right) \\
\begin{array}{c}
\Large{v_1} \oplus \Large{v_2} \\
\Large{\varphi_{v_1}} \oplus \Large{\varphi_{v_2}}
\end{array}
\]

then \(\ker(\varphi_u \oplus \varphi_w) = U \cap W \)

\[
U \subsetneq W \iff \text{rank}(\varphi_u \oplus \varphi_w) = n - r
\]

- The \((n - r + 1) \times (n - r + 1)\)-minors give polynomials conditions for \(\mathbb{F}(r, s; n) \).
Example

\[
\dim(V = \text{span}(v_1, \cdots, v_4)) = 4.
\]

Let

\[(\text{span}(u), \text{span}(w_1, w_2)) \in \mathbb{F}(1, 2; 4)\]

with

\[
u = \sum_{i=1}^{4} a_i v_i \quad \text{and} \quad w_1 \wedge w_2 = \sum_{i<j} b_{ij} v_i \wedge v_j.
\]

By definition

\[
0 = u \wedge w_1 \wedge w_2 = \sum_{i<j<k} (a_i b_{jk} - a_j b_{ik} + a_k b_{ij}) v_i \wedge v_j \wedge v_k
\]

and

\[
\mathbb{F}(1, 2; 4) = V(X_1 X_{2,3} - X_2 X_{13} + X_3 X_{12}, \cdots)
\]
Example

\[\dim(V = \text{span}(v_1, \cdots, v_4)) = 4. \]

Let

\[(\text{span}(u), \text{span}(w_1, w_2)) \in \mathbb{F}(1, 2; 4)\]

with

\[u = \sum_{i=1}^{4} a_i v_i \quad \text{and} \quad w_1 \wedge w_2 = \sum_{i<j} b_{ij} v_i \wedge v_j. \]

By definition

\[0 = u \wedge w_1 \wedge w_2 = \sum_{i<j<k} (a_i b_{jk} - a_j b_{ik} + a_k b_{ij}) v_i \wedge v_j \wedge v_k \]

and

\[\mathbb{F}(1, 2; 4) = V(X_1 X_{2,3} - X_2 X_{13} + X_3 X_{12}, \cdots) \]
Example

\[
\dim(V = \text{span}(v_1, \cdots, v_4)) = 4.
\]

Let

\[
(\text{span}(u), \text{span}(w_1, w_2)) \in \mathbb{F}(1, 2; 4)
\]

with

\[
u = \sum_{i=1}^{4} a_i v_i \quad \text{and} \quad w_1 \wedge w_2 = \sum_{i<j} b_{ij} v_i \wedge v_j.
\]

By definition

\[
0 = u \wedge w_1 \wedge w_2 = \sum_{i<j<k} (a_i b_{jk} - a_j b_{ik} + a_k b_{ij}) v_i \wedge v_j \wedge v_k
\]

and

\[
\mathbb{F}(1, 2; 4) = V(X_1 X_{2,3} - X_2 X_{13} + X_3 X_{12}, \cdots)
\]
Example

\[\dim(V = \text{span}(v_1, \cdots, v_4)) = 4. \]

Let

\[(\text{span}(u), \text{span}(w_1, w_2)) \in \mathbb{F}(1, 2; 4) \]

with

\[u = \sum_{i=1}^{4} a_i v_i \text{ and } w_1 \wedge w_2 = \sum_{i<j} b_{ij} v_i \wedge v_j. \]

By definition

\[0 = u \wedge w_1 \wedge w_2 = \sum_{i<j<k} (a_i b_{jk} - a_j b_{ik} + a_k b_{ij}) v_i \wedge v_j \wedge v_k \]

and

\[\mathbb{F}(1, 2; 4) = V(X_1 X_{2,3} - X_2 X_{13} + X_3 X_{12}, \cdots) \]
Complete flag varieties

Definition. A flag variety $\mathbb{F}(1, \cdots, n - 1; n)$ is called **complete**.

Let $\{e_1, \cdots, e_n\}$ be the standard basis of \mathbb{C}^n. We have a full flag

$$\mathcal{F} := 0 \subsetneq \mathbb{C} \cdot e_1 \subsetneq \cdots \subsetneq \bigoplus_{i=1}^{n-1} \mathbb{C} \cdot e_i \subsetneq \mathbb{C}^n$$

Facts.

- GL_n acts transitively on complete flag varieties.

- The stabilizer $\mathbb{B} := \text{stab}_{\text{GL}_n}(\mathcal{F})$ is the (Borel) subgroup of upper triangular matrices in GL_n, and

$$\text{GL}_n/\mathbb{B} = \mathbb{F}(1, \cdots, n - 1; n).$$

In particular, $\mathbb{P}^1 = \mathbb{F}(1, 2) = G(1, 2) = \text{GL}_2/\left(\begin{array}{cc} * & * \\ 0 & * \end{array}\right)$.
Complete flag varieties

Definition. A flag variety $F(1, \cdots, n-1; n)$ is called **complete**.

Let $\{e_1, \cdots, e_n\}$ be the standard basis of \mathbb{C}^n. We have a **full flag**

$$F := 0 \subset \mathbb{C} \cdot e_1 \subset \cdots \subset \bigoplus_{i=1}^{n-1} \mathbb{C} \cdot e_i \subset \mathbb{C}^n$$

Facts.

- GL_n acts transitively on complete flag varieties.
- The stabilizer $B := \text{stab}_{GL_n}(F)$ is the (Borel) subgroup of upper triangular matrices in GL_n, and

$$GL_n/B = F(1, \cdots, n-1; n).$$

In particular, $\mathbb{P}^1 = F(1, 2) = G(1, 2) = GL_2/\left(\begin{smallmatrix} * & * \\ 0 & * \end{smallmatrix}\right)$.
Complete flag varieties

Definition. A flag variety $\mathbb{F}(1, \cdots, n-1; n)$ is called **complete**.

Let $\{e_1, \cdots, e_n\}$ be the standard basis of \mathbb{C}^n. We have a **full flag**

$$\mathcal{F} := 0 \subset \mathbb{C} \cdot e_1 \subset \cdots \subset \bigoplus_{i=1}^{n-1} \mathbb{C} \cdot e_i \subset \mathbb{C}^n$$

Facts.

- GL_n acts transitively on complete flag varieties.

- The stabilizer $\mathbb{B} := \text{stab}_{\text{GL}_n}(\mathcal{F})$ is the (Borel) subgroup of upper triangular matrices in GL_n, and

$$\text{GL}_n / \mathbb{B} = \mathbb{F}(1, \cdots, n-1; n).$$

In particular, $\mathbb{P}^1 = \mathbb{F}(1, 2) = G(1, 2) = \text{GL}_2 / \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$.
Complete flag varieties

Definition. A flag variety $\mathbb{F}(1, \cdots, n-1; n)$ is called **complete**.

Let $\{e_1, \cdots, e_n\}$ be the standard basis of \mathbb{C}^n. we have a **full flag**

$$\mathcal{F} := 0 \subset C \cdot e_1 \subset \cdots \subset \bigoplus_{i=1}^{n-1} C \cdot e_i \subset C^n$$

Facts.

- GL_n acts transitively on complete flag varieties.
- The stabilizer $B := \text{stab}_{GL_n}(\mathcal{F})$ is the (Borel) subgroup of upper triangular matrices in GL_n, and

$$GL_n/B = \mathbb{F}(1, \cdots, n-1; n).$$

In particular, $\mathbb{P}^1 = \mathbb{F}(1, 2) = G(1, 2) = GL_2 / \star \star \star \big(\begin{array}{cc} \star & \star \\ 0 & \star \end{array} \big).$
Complete flag varieties

Definition. A flag variety $\mathbb{F}(1, \cdots, n-1; n)$ is called **complete**.

Let $\{e_1, \cdots, e_n\}$ be the standard basis of \mathbb{C}^n. we have a **full flag**

$$\mathcal{F} := 0 \subset \mathbb{C} \cdot e_1 \subset \cdots \subset \bigoplus_{i=1}^{n-1} \mathbb{C} \cdot e_i \subset \mathbb{C}^n$$

Facts.

- GL_n acts transitively on complete flag varieties.
- The stabilizer $\mathcal{B} := \text{stab}_{\text{GL}_n}(\mathcal{F})$ is the (**Borel**) subgroup of upper triangular matrices in GL_n, and

$$\text{GL}_n/\mathcal{B} = \mathbb{F}(1, \cdots, n-1; n).$$

In particular, $\mathbb{P}^1 = \mathbb{F}(1, 2) = G(1, 2) = \text{GL}_2 / \begin{pmatrix} * & * \\ 0 & * \end{pmatrix}$.
Complete flag varieties

Definition. A flag variety $\mathbb{F}(1, \cdots, n-1; n)$ is called **complete**.

Let $\{e_1, \cdots, e_n\}$ be the standard basis of \mathbb{C}^n. We have a **full flag**

$$\mathcal{F} := 0 \subset \mathbb{C} \cdot e_1 \subset \cdots \subset \bigoplus_{i=1}^{n-1} \mathbb{C} \cdot e_i \subset \mathbb{C}^n$$

Facts.

- GL_n acts transitively on complete flag varieties.
- The stabilizer $\mathcal{B} := \text{stab}_{\text{GL}_n}(\mathcal{F})$ is the (**Borel**) subgroup of upper triangular matrices in GL_n, and

$$\text{GL}_n/\mathcal{B} = \mathbb{F}(1, \cdots, n-1; n).$$

In particular, $\mathbb{P}^1 = \mathbb{F}(1,2) = G(1,2) = \text{GL}_2 \left/ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \right.$.
Complete flag varieties

Definition. A flag variety \(\mathbb{F}(1, \cdots, n-1; n) \) is called **complete**.

Let \(\{e_1, \cdots, e_n\} \) be the standard basis of \(\mathbb{C}^n \). we have a **full flag**

\[
\mathcal{F} := 0 \subset \mathbb{C} \cdot e_1 \subset \cdots \subset \bigoplus_{i=1}^{n-1} \mathbb{C} \cdot e_i \subset \mathbb{C}^n
\]

Facts.

- \(\text{GL}_n \) acts transitively on complete flag varieties.
- The stabilizer \(\mathcal{B} := \text{stab}_{\text{GL}_n}(\mathcal{F}) \) is the (Borel) subgroup of upper triangular matrices in \(\text{GL}_n \), and

\[
\text{GL}_n/\mathcal{B} = \mathbb{F}(1, \cdots, n-1; n).
\]

In particular, \(\mathbb{P}^1 = \mathbb{F}(1, 2) = G(1, 2) = \text{GL}_2 \big/ \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \).