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Introduction

Let P be a real n-dimensional projective space. For k ∈ Z and ε ∈ Z/2Z, we denote
by C∞P (ε|k) the C∞-line-bundle on P whose sections f satisfy the relation:

f(λx) = (sgnλ)ελkf(x) ∀λ ∈ R×,

where [x] is a system of homogeneous coordinates. As is well-known (see e.g., [4],
[8]), for −n − 1 < k < 0 the real projective Radon transform interchanges global
sections of C∞P (ε|k) with global sections of the line-bundle C∞P ∗(ε∗|k∗) on the dual
projective space P ∗, where k∗ = −n− 1− k, ε∗ ≡ −n− 1− ε.

With Pierre Schapira, we studied in [2] complex integral transforms within the
framework of sheaves and D-modules (note that another approach to integral trans-
forms by D-module theory is announced in [7]). In particular, we obtained general
adjunction formulas which, by [13], have their analogue within the framework of
tempered and formal cohomology. Then, we investigated in [3] the analytical as-
pects of the complex projective Radon transform. As an application, we recovered
the above mentioned isomorphism related to the real projective Radon transform.

Let E = P \ H be the affine chart associated to a hyperplane H ⊂ P . The
Schwartz space S(E) of rapidly decreasing C∞-functions on E, is naturally identified
with the space of global sections of C∞P (ε|k), vanishing up to infinite order in H. The
real affine Radon transform is thus obtained by restriction of the projective one. A
Paley-Wiener-type theorem gives necessary and sufficient conditions for a section
ϕ of C∞P ∗(ε∗|k∗) to be in the image of S(E) by the Radon transform: depending
on the parity of ε∗, either the so-called Cavalieri condition appears, or all nonlocal
differentials (in the sense of [5]) have to vanish.

Here, we will use the adjunction formulas of [2], [13], and the analytical results
of [3]. By computing the transform of some constant sheaves, we will then recover
the Paley-Wiener-type theorem mentioned above, as well as prove other related
results such as: a Borel-type theorem for nonlocal differentials, Helgason’s support
theorem, a description of the conformal Radon transform, or of the affine Radon
transform for distributions or hyperfunctions.

As in [2], [3], the main point that we make is that our general adjunction formulas
allow one to separate the analytical (i.e., D-module-theoretical) and the topological
(i.e., sheaf-theoretical) features of the transform under consideration. Thus, we will
see how the different phenomena occurring in the real projective, real affine, or
conformal Radon transform reflect different topological configurations attached to
the same analytical setting, given by the complex projective Radon transform.

Using this approach, a delicate problem consists in making the link between the
isomorphisms that we obtain, and the explicit integral formulas in the literature.
We thus give in Appendix A some results on quantized integral transforms. In
particular, we will show how the distribution kernel of the real Radon transform
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is best understood as boundary value of a meromorphic kernel associated to the
complex Radon transform.

This paper is organized as follows. In section 1, we state the theorems related
to the real Radon transform, using a classical formalism (i.e., without mentioning
sheaves or D-modules). In section 2, we collect from [2] and [13] the formalism and
the results of the theory of integral transforms for sheaves and D-modules that we
need, and we present a brief review of [3]. Then, in section 3, after some geomet-
ric preparation (i.e., computation of the transform of some constant sheaves), we
prove the theorems stated in section 1. Additional results are obtained in section 4.
Finally, we gather in Appendix A some results on quantized adjunction formulas
for integral transforms, necessary for identifying the associated distribution kernels,
and in Appendix B a description in bi-homogeneous coordinates of the blow-up of
a projective space along a point, necessary to give a projective invariant expression
of nonlocal differentials.

The results in this paper were announced in [1].
We wish to express our gratitude to Masaki Kashiwara for many useful discus-

sions during the preparation of this work.

1 Statement of the Main Results

1.1 Projective Radon Transform

In this section, using a classical formalism, we will state the results on the real
Radon transform that we will discuss later in this article. Most of these results are
classical and may be found in [4], [8], for example. References will be made only
to [4].

Denote by R× the multiplicative group R \ {0}. For k ∈ Z and ε ∈ Z/2Z, we
will say that a function f on an R×-homogeneous space is (ε|k)-homogeneous, if

f(λx) = (sgnλ)ελkf(x) ∀λ ∈ R×. (1.1)

Let P = P (V ) be the n-dimensional projective space attached to a real (n + 1)-
dimensional vector space V . Set V̇ = V \ {0}, and let γ : V̇ −→ P be the natural
projection. As usual, if (x) is the system of coordinates associated to a base of V ,
we denote by [x] the corresponding system of homogeneous coordinates in P . Let
C∞

V̇
(ε|k) be the sheaf of (ε|k)-homogeneous C∞-functions on V̇ , and set:

C∞P (ε|k) = γ∗C∞V̇ (ε|k). (1.2)

This is the C∞-line-bundle on P , whose sections satisfy the relation (1.1) when
written in homogeneous coordinates. We denote by f [x] the section of C∞P (ε|k) on
an open subset U ⊂ P associated with a section f(x) of C∞

V̇
(ε|k) on γ−1(U).
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Remark 1.1. For l ∈ Z, the map f [x] 7→ |x|lf [x] gives an isomorphism from C∞P (ε|k)
to C∞P (ε + l|k + l). Since this isomorphism is not canonical, we prefer to keep k as
part of our notation.

Consider the distribution on R:

δ(ε|k)(t) =
1

2πi

dk

dtk

(
1

t− i0
− (−1)ε

t+ i0

)
. (1.3)

Note that the distribution δ(ε|k)(t) is (−ε− 1| − k − 1)-homogeneous, δ(0|0)(t) is the
classical Dirac delta function, and δ(1|0)(t) equals pv(1/t), the principal value of 1/t.
The n-form on V :

ω(x) =
n∑

j=0

(−1)jxjdx0 ∧ · · · ∧ d̂xj ∧ · · · ∧ dxn

is (n+1|n+1)-homogeneous. We denote by ω[x] the associated (n+1|n+1)-density
on P , usually called (real) Leray form. Let us set:

k∗ = −n− 1− k, ε∗ ≡ −n− 1− ε, ε ≡ ε+ 1. (1.4)

Definition 1.2. Let P ∗ = P (V ∗) denote the dual projective space to P . We denote

by R
(ε|k)
P the real projective Radon transform:

R
(ε|k)
P : Γ(P ; C∞P (ε|k)) −→ Γ(P ∗; C∞P ∗(ε∗|k∗))

f [x] 7→
∫
f [x]δ(n+ε|n+k)(〈x, ξ〉)ω[x].

Concerning the Radon transform of homogeneous C∞-functions, the following
result is known (cf e.g., [4, end of page 73]):

Theorem 1.3. For −n − 1 < k < 0, the transform R
(ε|k)
P introduced above is an

isomorphism of inverse R
(ε∗|k∗)
P ∗ .

1.2 Nonlocal Differentials

For U ⊂ P a sub-analytic open subset, let us denote by

Γw(U ; C∞P (ε|k)) ⊂ Γ(P ; C∞P (ε|k))

the subspace of functions vanishing up to infinite order in P \ U .
Let H ⊂ P be a hyperplane, ξ◦ ∈ P ∗ its dual point, and set E = P \ H,

P ∗
ξ◦

= P ∗ \ {ξ◦}. Let H∗ = Ṫξ◦P
∗/R× be the projective tangent bundle to P ∗ at ξ◦,

and identify it with a hyperplane of P ∗ not containing ξ◦.
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Definition 1.4. (i) For ϕ ∈ Γ(P ∗; C∞P ∗(ε∗|k∗)) and ξ′ ∈ H∗, set:

d
(ω|m)
ξ◦

ϕ[ξ′] =

∫ +∞

−∞
ϕ(ξ◦ + tξ′)δ(ω|m)(t)dt.

This is a section of Γ(H∗; C∞H∗(ω|m)).

(ii) For ϕ ∈ Γw(P ∗
ξ◦

; C∞P ∗(ε∗|k∗)) and ξ′ ∈ H∗, set:

c
(ω|m)
ξ◦

ϕ[ξ′] =

∫ +∞

−∞
ϕ(sξ◦ + ξ′) sgn(s)ωsmds.

This is a section of Γ(H∗; C∞H∗(ω + ε∗ + 1|m+ k∗ + 1)).

Remark 1.5. (a) For t, s ∈ R, the points of homogeneous coordinates [ξ◦ + tξ′],
[sξ◦ + ξ′] describe two affine charts of the projective line issued from ξ◦ with
tangent direction ξ′. This description is not projectively invariant, since it de-
pends on the non canonical identification of H∗ with a hyperplane of P ∗. That
is why we had to write ϕ(·) instead of ϕ[·] as integrand in the above definitions.
For an invariant expression of the above functionals, refer to Appendix B.

(b) Note that d
(0|1)
ξ◦

ϕ is the usual differential of ϕ at ξ◦, and that

d
(1|1)
ξ◦

ϕ[ξ′] = pv

∫ +∞

−∞

ϕ(ξ◦ + tξ′)

t2
dt

is the nonlocal differential of ϕ at ξ◦ in the sense of [5].

(c) For ω ≡ ε∗ it is possible to make c
(ω|m)
ξ◦

act on the whole Γ(P ∗; C∞P ∗(ε∗|k∗)), by
patching the two charts described in (a). This gives:

c
(ε∗|m)
ξ◦

ϕ[ξ′] = d
(1|m+k∗+1)
ξ◦

ϕ[ξ′].

On the contrary, note that for ω ≡ ε∗ the tempered distribution kernel on
P ∗

ξ◦
×H∗ associated to c

(ε∗|m)
ξ◦

cannot be extended to the whole P ∗ ×H∗ as a
kernel sending Γ(P ∗; C∞P ∗(ε∗|k∗)) to Γ(H∗; C∞H∗(0|m+ k∗ + 1)).

1.3 Affine Radon transform

The space Γw(E; C∞P (ε|k)) is naturally identified with the Schwartz space of rapidly
decreasing C∞-functions on the affine chart E. For k = −n, ε ≡ −n, the restriction
of R

(ε|k)
P to the space Γw(E; C∞P (ε|k)) is the classical affine Radon transform, given

by integration along hyperplanes. A natural problem is then to describe the image
by R

(ε|k)
P of Γw(E; C∞P (ε|k)) in Γ(P ∗; C∞P ∗(ε∗|k∗)).
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Theorem 1.6. Assume −n− 1 < k < 0. Let ϕ ∈ Γ(P ∗; C∞P ∗(ε∗|k∗)).

(i) If ε∗ ≡ 0, then there exists a function f ∈ Γw(E; C∞P (n|k)) such that ϕ =

R
(n|k)
P f if and only if ϕ satisfies the odd Cavalieri condition: for any non

negative integer m:
d

(1|k∗+m+1)
ξ◦

ϕ = 0. (1.5)

(ii) If ε∗ ≡ 1, then there exists a function f ∈ Γw(E; C∞P (n|k)) such that ϕ =

R
(n|k)
P f if and only if ϕ belongs to Γw(P ∗

ξ◦
; C∞P ∗(1|k∗)), and satisfies the (even)

Cavalieri condition: for any non negative integer m and any ξ′ ∈ H∗, the
integral

c
(0|m)
ξ◦

ϕ[ξ′] =

∫ +∞

−∞
ϕ(sξ◦ + ξ′)smds (1.6)

is a homogeneous polynomial of degree m+ k∗ + 1 in ξ′.

Note that part (ii) was obtained e.g., in [4, page 86] for k = −n. Of course,
part (i) could also be proved by the same method, which make use of the inversion
formula for the Fourier transform. As remarked by those authors, the exponential
kernel of the Fourier transform makes their method of proof violate the projective
invariance of the Radon transform. Our approach is different, and will show how
Cavalieri condition is of a geometrical nature, related to the complex projective
Radon transform.

An old theorem of Borel asserts that any formal series is the Taylor series of
some C∞ function. As a byproduct of our cohomological proof of Theorem 1.6, we
will get the following Borel-type theorem for nonlocal differentials.

Theorem 1.7. Assume −n− 1 < k < 0. For ω ∈ Z/2Z, and for any non negative
integer m, take gm ∈ Γ(H∗; C∞H∗(ω|k∗ +m+ 1)).

(i) If ω ≡ 1, then there exists f ∈ Γ(P ∗; C∞P ∗(0|k∗)) such that d
(1|k∗+m+1)
ξ◦

f = gm,
for any m.

(ii) If ω ≡ 0, then there exists f ∈ Γw(P ∗
ξ◦

; C∞P ∗(1|k∗)) such that c
(0|m)
ξ◦

f ≡ gm

modulo homogeneous polynomials, for any m.

Other results that can be obtained along the same lines are discussed in sec-
tion 4. These are for example Helgason’s support theorem, and a description of the
conformal Radon transform, or of the affine Radon transform for distributions or
hyperfunctions.
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2 Review on Integral Transforms

2.1 Notations

Let M be a real analytic manifold. If A ⊂M is a locally closed subset, we denote by
CA the sheaf on M which is the constant sheaf on A with stalk C, and zero on M \A.
Denote by Db(CM) the derived category of the category of bounded complexes of
sheaves of C-vector spaces onM , and by Db

R−c(CM) its full triangulated sub-category
of objects with R-constructible cohomology groups. We denote by ⊗, Rf !, f

−1,
RHom , Rf∗, and f ! the “six operations” of sheaf theory, and we denote by � the
exterior tensor product. We set for short RHom(·, ·) = RΓ(M ;RHom (·, ·)). To F ∈
Db(CM) we associate its duals D′F = RHom (F,CM), DF = RHom (F, ωM), where
ωM ' orM [dimRM ] denotes the dualizing complex, and orM the orientation sheaf.
We denote by T ∗M the cotangent bundle to M , and we set Ṫ ∗M = T ∗M \ T ∗

MM ,
the cotangent bundle with the zero-section removed. We denote by Db

R−c(CM ; Ṫ ∗M)
the localization of Db

R−c(CM) by the null system N of complexes of constant sheaves
in M with finite rank (in the terminology of [12], N is the null system of objects
F whose micro-support SS(F ) is contained in the zero-section T ∗

MM). Recall that
the objects of Db

R−c(CM ; Ṫ ∗M) are the same as those of Db
R−c(CM), and that a

morphism F −→
u
G in Db

R−c(CM) becomes an isomorphism in Db
R−c(CM ; Ṫ ∗M) if and

only if the third term H of a distinguished triangle F −→
u
G −→ H −→

+1
is in N .

Denote by Db(DM) the derived category of the category of bounded complexes of
left modules over the sheaf of ringsDM of linear differential operators. Following [10],
[13], one considers the functors:

THom(·,DbM) : Db
R−c(CM)op −→ Db(DM),

·
w

⊗ C∞M : Db
R−c(CM) −→ Db(DM),

where DbM denotes the sheaf of Schwartz’s distributions on M . These are induced
by exact functors from the abelian category of R-constructible sheaves, charac-
terized by the requirement that if Z is a closed sub-analytic subset of M , then

THom(CZ ,DbM) = ΓZDbM and CM\Z
w

⊗ C∞M = I∞Z,M , where I∞Z,M denotes the ideal
of C∞M of functions vanishing to infinite order on Z.

Let X be a complex manifold, and denote by dX its dimension. If f : S −→ X
is a morphism, we set dS/X = dS − dX . Denote by OX the structural sheaf of X,
by ΩX the holomorphic forms of maximal degree, and by DX the sheaf of rings of
holomorphic linear differential operators.

We denote by f ∗ and f−1 the proper direct image and inverse image for D-

modules, and we denote by � the exterior tensor product. To M ∈ Db(DX) we
associate its dual DXM = RHomDX

(M,DX ⊗OX
Ω⊗−1

X [dX ]). We set for short
Sol(M) = RHomDX

(M,OX). We say that a DX-module M is good (resp. quasi-
good) if, on every relatively compact open subset of X, it admits a filtration {Mk}
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by coherent DX-submodules such that each quotient Mk/Mk−1 admits a good
filtration and Mk = 0 for |k| � 0 (resp. k � 0). We denote by Db

good(DX)

(resp. Db
q−good(DX)) the full triangulated sub-category of Db(DX) consisting of ob-

jects with good (resp. quasi-good) cohomology groups. We denote by Db
rh(DX)

the full triangulated sub-category of Db
good(DX) of objects with regular holonomic

cohomology groups.

For F ∈ Db
R−c(CX), the complexes THom(F,OX) and F

w

⊗OX are defined in [10],

[13] as the Dolbeault complexes with coefficients in THom(F,DbX) and F
w

⊗ C∞X ,
respectively. We set for short THom(·, ·) = RΓ(X;THom(·, ·)).

2.2 Integral Kernels

Let us be given a correspondence of complex manifolds:

S
f

��~~
~~

~~
~

g

��@
@@

@@
@@

X Y.

This induces a morphism h = (f, g):

S
h
// X × Y.

For G ∈ Db(CY ),M∈ Db(DX), and kernels L ∈ Db(CS), L ∈ Db(DS), we define:{
L ◦G = Rf !(L⊗ g−1G),
M◦L = g∗(f

−1M⊗L
OS
L),

(2.1)

and we similarly define F ◦ L and L ◦ N for F ∈ Db(CX), N ∈ Db(DY ).

Remark 2.1. By the projection formula, there are natural isomorphisms:

L ◦G ' (Rh!L) ◦G, M◦L 'M◦ (h∗L), (2.2)

where we consider Rh!L and h∗L as kernels on the product X × Y , endowed with
the two natural projections. Recall that if h is proper and L is C-constructible, one
has THom(Rh!L,OX×Y )[dX + dY − dS] ' h∗L.

We obtained in [2] general adjunction formulas for the functors ◦ and ◦. Ana-
logue formulas in the framework of formal and temperate cohomology were obtained
in [13]:

Theorem 2.2. ([13, Theorem 10.8]) Let G ∈ Db
R−c(CY ), M ∈ Db

q−good(DX), L ∈
Db

C−c(CS), and set L = THom(L,OS). Assume that:{
f−1 supp(M) ∩ supp(L) is proper over Y,
g−1 supp(G) ∩ supp(L) is proper over X.
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Then, there are natural isomorphisms:

RHomDY
(M◦L, G

w

⊗OY )
∼←− RHomDX

(M, (L ◦G)
w

⊗OX)[dS/Y ], (2.3)

RΓc(Y ;THom(G,ΩY )⊗L
DY

(M◦L))[dS/X ] (2.4)
∼−→ RΓc(X;THom(L ◦G,ΩX)⊗L

DX
M).

In order to apply the above general result to specific cases, a topological and
an analytical computations have to be performed. The first consists in computing
L ◦G, or at least in finding an F ∈ Db

R−c(CX) and a morphism:

F −→ L ◦G, (2.5)

while the second consists in computingM◦L, or at least in finding an N ∈ Db(DY )
and a morphism:

N −→M◦ L. (2.6)

Finally, one has to explicitly describe the morphisms:

RHomDY
(N , G

w

⊗OY )←− RHomDX
(M, F

w

⊗OX)[dS/Y ], (2.7)

RΓc(Y ;THom(G, ΩY )⊗L
DY
N )[dS/X ] −→ RΓc(X;THom(F,ΩX)⊗L

DX
M), (2.8)

obtained by means of (2.5), (2.3) (resp. (2.4)), and (2.6). The following lemma
describes the kernels associated to morphisms like (2.6). We discuss in Appendix A
how to compute the distribution kernels associated to morphisms like (2.7), (2.8).

Lemma 2.3. (cf [3, Lemma 3.1]) LetM∈ Db
good(DX), N ∈ Db(DY ), L ∈ Db(DS).

Assume that f−1 supp(M) ∩ supp(L) is proper over Y . Then, there is a natural
isomorphism:

α : HomDX×Y
(DM�N [−dX ], h∗L)

∼−→ HomDY
(N ,M◦L).

Proof. By (2.2), it is not restrictive to assume S = X×Y , f and g being the natural
projections. In this case, one has:

M◦L ' Rg!(L(dX ,0) ⊗f−1DX
f−1M),

where we set L(dX ,0) = f−1ΩX ⊗f−1OX
L. To conclude, it is then enough to consider

the chain of isomorphisms:

RHomDS
(DM�N [−dX ],L) ' RHomg−1DY

(g−1N , RHomf−1DX
(f−1DM[−dX ],L))

' RHomg−1DY
(g−1N , f−1(ΩX ⊗OX

M)⊗f−1DX
L)

' RHomDY
(N , Rg∗(L(dX ,0) ⊗f−1DX

f−1M))

' RHomDY
(N , Rg!(L(dX ,0) ⊗f−1DX

f−1M)).
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2.3 Complex Projective Radon Transform

In this subsection we will review the results of [3] on the complex projective Radon
transform. Note that here, following [14], we use a different kernel with respect to
loc. cit. Since the proofs do not change significantly, we will not repeat them here.

Let P be a complex n-dimensional projective space, P∗ be the dual projective
space, and consider the diagram:

A � � // P× P∗
f

{{xxxxxxxxx
g

##H
HH

HH
HH

HH

P P∗,

where f , g are the natural projections, and A = {(z, ζ); 〈z, ζ〉 = 0} denotes the
incidence relation. Note that, denoting by Λ = Ṫ ∗

A(P× P∗) the conormal bundle to
A with the zero-section removed, the associated microlocal correspondence:

Λ

}}||
||

||
||

!!D
DD

DD
DD

D

Ṫ ∗P Ṫ ∗P∗

induces a globally defined contact transformation (the Legendre transform):

χ : Ṫ ∗P ∼−→ Ṫ ∗P∗. (2.9)

Set Ω = (P× P∗) \ A, and consider the kernels on P× P∗:

L = CΩ, L = THom(L,OP×P∗), (2.10)

so that Sol(L) ' L by the Riemann-Hilbert correspondence of [10]. Note that
L = OP×P∗ [∗A] is the sheaf of meromorphic functions with poles on A.

Remark 2.4. By [3, Lemma 4.6] (see also [12, Exercise III.15]), the functors:

· ◦ L : Db(CP) −→ Db(CP∗),

· ◦ L : Db(DP) −→ Db(DP∗),

are equivalences of categories, with quasi-inverse DL ◦ · and DL ◦ ·, respectively.
Moreover, the first equivalence preserves R- and C-constructibility, while the second
preserves goodness. Using (2.9) it follows as in [2, Proposition 3.5] that the transform
M◦L of a good DP-moduleM is essentially concentrated in degree zero (precisely,
this means that the cohomology groups Hj(M◦L) are flat holomorphic connections
for j 6= 0).
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Let k, l ∈ Z. Denote by OP(k) the −k-th tensor power of the tautological line
bundle, and set DP(k) = DP ⊗OP

OP(k). For H ∈ Db(DP×P∗), set for short

H(n,0)(k, l) = f−1(ΩP ⊗OP
OP(k))⊗f−1OP

H⊗g−1OP∗
g−1OP∗(l).

Following Leray [15, p. 94], we set:

ω[z] =
n∑

j=0

(−1)jzj dz0 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn,

sk[z, ζ] =
1

2πi

ω[z]

〈z, ζ〉n+1+k
∈ Γ(P× P∗;L(n,0)(−k, k∗)). (2.11)

Theorem 2.5. ([3, Theorem 4.3]) Assume −n− 1 < k < 0. Then, the morphism

α(sk) : DP∗(−k∗) −→ DP(−k) ◦ L

(where α has been introduced in Lemma 2.3) is an isomorphism in Db(DP∗). Its
inverse is associated to the kernel sk∗ [ζ, z].

Briefly, the idea of the proof is as follows: In view of (2.9), the theory of micro-
differential operators of [17] implies that α(sk) is an isomorphism in Ṫ ∗P∗ for n +
1 + k > 0. We use the hypothesis k < 0 to extend the isomorphism across the
zero-section.

Applying Theorems 2.5 and 2.2, we get the following corollary.

Corollary 2.6. ([3, Corollary 4.5]) Let F ∈ Db
R−c(CP). Then, for −n− 1 < k < 0

the section sk induces isomorphisms:

RΓ(P;F
w

⊗OP(k))
∼←− RΓ(P∗; (F ◦ L)

w

⊗OP∗(k
∗))[n],

THom(F,OP(k))[n]
∼−→ THom(F ◦ L,OP∗(k

∗)).

3 Proof of the Main Results

3.1 Geometrical Preliminaries

As in (2.10), consider the kernel L = CΩ on Db
C−c(CP×P∗). Let P and P ∗ be the real

projective spaces of which P and P∗ are the respective complexifications (compatible
with the embedding of affine charts Rn −→ Cn). Assume for simplicity that n > 2.
Since π1(P ) = Z/2Z, there are essentially two locally constant sheaves of rank 1
on P : the constant sheaf CP , that we also denote by CP (0), and the canonical line
bundle, that we denote by CP (1). Recall notations (1.4).
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Lemma 3.1. ([3, Proposition 5.16]) For ε ∈ Z/2Z, set:

C′
P ∗(ε∗)[−n] = CP (ε) ◦ L.

Then, for ε∗ ≡ 1 we have C′
P ∗(1) ' CP ∗(1), and for ε∗ ≡ 0 we have a distinguished

triangle (d.t. for short):

CP∗\P ∗ [1] −→ C′
P ∗(0) −→ CP∗ −→

+1
.

In particular, there are natural morphisms:

βε ∈ Hom(CP ∗(ε∗)[−n],CP (ε) ◦ L), (3.1)

which become isomorphisms in Db
R−c(CP∗ ; Ṫ

∗P∗).

Proof. For the description of CP (ε) ◦ L we refer to loc. cit. Here, we just point out
that β1∗ is given by the isomorphism C′

P ∗(1) ' CP ∗(1), and that β0∗ is given by the
natural morphisms:

CP ∗(0) −→ CP∗\P ∗ [1] −→ C′
P ∗(0).

Notation 3.2. Let H ⊂ P be a hyperplane, H ⊂ P its natural complexification,
and ξ◦ ∈ P ∗ its dual point. Let H∗ ⊂ H∗ be the dual projective spaces to H and
H respectively. Set E = P \H, P∗ξ◦ = P∗ \ {ξ◦}, P ∗

ξ◦
= P ∗ \ {ξ◦}, and consider the

maps:
P∗ ←−

i
P∗ξ◦ −→q H∗,

where i is the embedding, and q is the natural projection, dual of the embedding
H −→ P. Finally, set Q∗ = q−1(H∗) ⊂ P∗.

Using Lemma 3.1, we can easily compute the transform by L of the constant
sheaves CH(ε):

Lemma 3.3. Set C′
Q∗(ε) = i!q

−1C′
H∗(ε). Then we have:

CH(ε) ◦ L ' C′
Q∗(ε∗)[1− n].

Proof. Consider the natural maps

P× P∗ ←−̃
ı

H× P∗ξ◦ −→̃q H×H∗.

Let B ⊂ H × H∗ be the incidence relation, set ω = (H × H∗) \ B, and consider the
kernel

K = Cω ∈ Db
C−c(CH×H∗).
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Since Ω ∩ (H× P∗) = Ω ∩ (H× P∗ξ◦) = q̃−1(B), we have:

CH(ε) ◦ L = Rg!(CΩ ⊗ f−1CH(ε))

' Rg!(CΩ∩(H×P∗) ⊗ f−1CH(ε))

' Rg!Rı̃!q̃
−1(Cω ⊗ f−1CH(ε))

' Ri!q
−1Rg!(Cω ⊗ f−1CH(ε))

' Ri!q
−1(CH(ε) ◦K)

= Ri!q
−1C′

H∗(ε∗)[1− n],

where the last equality follows from Lemma 3.1. (By abuse of notation, we denoted
by f , g both the projections from P× P∗ and from H×H∗.)

Remark 3.4. Let us describe the microlocal geometry underlying Lemma 3.3. Re-
call that χ denotes the Legendre transform (2.9). By the microlocal theory of sheaves
of [12], since the sheaf CH(ε) is simple along the conormal bundle Ṫ ∗

HP, one knows
a priori that its transform by · ◦ L is again a simple sheaf along χ(Ṫ ∗

HP). In this
sense, the complex lines in Q∗ (which are the fibers of q) correspond to the complex
conormal directions to H in P.

Let us define CE(ε) by the natural short exact sequence:

0 −→ CE(ε) −→ CP (ε) −→ CH(ε) −→ 0.

Of course, CE(ε) ' CE, but since the morphism CP (ε) −→ CH(ε) depends on ε, we
keep the twist as part of our notation.

Lemma 3.5. In the triangulated category Db
R−c(CP∗ ; Ṫ

∗P∗), there are the following
d.t.s:

CE(0∗) ◦ L −→ CP ∗(0)[−n] −→ CQ∗(1)[1− n] −→
+1
, (3.2)

CE(1∗) ◦ L −→ CP ∗
ξ◦

(1)[−n] −→ CQ∗ [1− n] −→
+1

. (3.3)

Proof. By Lemmas 3.1 and 3.3, we have a d.t.:

CE(ε∗) ◦ L −→ C′
P ∗(ε)[−n] −→

a
C′

Q∗(ε)[1− n] −→
+1

. (3.4)

Since C′
P ∗(0) ' CP ∗(0) in Db

R−c(CP∗ ; Ṫ
∗P∗), (3.2) follows. Since CP∗ξ◦\Q

∗ [1] ' CQ∗

and CP∗ξ◦
[1] ' Cξ◦ in Db

R−c(CP∗ ; Ṫ
∗P∗), by definition of C′

Q∗(0) we have a d.t.:

CQ∗ [1− n] −→ C′
Q∗(0)[1− n] −→

b
Cξ◦ [−n] −→

+1
. (3.5)

Applying the octahedral axiom to (3.4), (3.5), and to the d.t.:

CP ∗
ξ◦

(1)[−n] −→ CP ∗(1)[−n] −−→
b◦a

Cξ◦ [−n] −→
+1
,

we get (3.3).
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3.2 Real Projective Radon Transform

As we noticed in [3], the space of (ε|k)-homogeneous C∞ functions or distributions,

defined as in (1.2), may be described in terms of the functors
w

⊗ and THom:

Lemma 3.6. For k ∈ Z and ε ∈ Z/2Z there are natural identifications:

C∞P (ε|k) ' CP (ε)
w

⊗OP(k), (3.6)

DbP (ε|k) ' THom(D′(CP (ε)),OP(k)). (3.7)

Proof. Since the arguments are similar, we will just consider (3.7). Recall that
P = P (V ) for an (n + 1)-dimensional real vector space V , so that P = P(W ) for a
complexification W of V . Set Ẇ = W \{0}, and denote byMk the left DẆ -module
associated with the differential operator (

∑n
j=0 zj∂j)−k. Then RHomDẆ

(Mk,DbV̇ )

is the sheaf of R>0-homogeneous distributions of degree k on V̇ . Since any R>0-
homogeneous function decomposes into the sum of an even and an odd R×-homo-
geneous function, to prove (3.7) we have to establish the isomorphism:

Rγ∗RHomDẆ
(Mk,DbV̇ ) ' THom(D′(CP (0)⊕ CP (1)),OP(k)),

where γ : Ẇ −→ P is the natural projection. One hasMk ' γ−1DP(−k), and hence:

Rγ∗RHomDẆ
(Mk,DbV̇ )

' Rγ∗RHomDẆ
(γ−1DP(−k), THom(D′CV̇ ,OẆ ))

' RHomDP
(DP(−k), γ∗THom(D′CV̇ ,OẆ ))[−1]

' RHomDP
(DP(−k), THom(Rγ!D

′CV̇ ,OP))[−2]

' RHomDP
(DP(−k), THom(Rγ!CV̇ [1− n],OP)),

where in the second isomorphism we used the fact that γ is smooth, and where
the third isomorphism follows from [11, Corollary 9.2.2]. Recall that D′(CP (ε)) '
CP (ε∗)[−n]. One then concludes using the following lemma.

Lemma 3.7. Denote by γ : V̇ −→ P the natural projection. Then, there is an iso-
morphism:

Rγ!CV̇ [1] ' CP (0)⊕ CP (1).

Proof. Denote by S = V̇ /R>0 the real sphere, and decompose γ into:

V̇ −→
p
S −→

q
P.

Clearly, HjRp!CV̇ vanishes for j 6= 1, and, for j = 1, it is a locally constant sheaf of
rank one. Since S is simply connected, we get Rp!CV̇ [1] ' CS. The trace morphism
q!CS ' q!q

!CP −→ CP induces a short exact sequence:

0 −→ CP (1) −→ q!CS −→
tr

CP (0) −→ 0.
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Composing the natural morphism CP (0) −→ q!CS, 1 7→ 1 with the trace morphism
tr, we get twice the identity, and hence the above sequence splits.

Proof of Theorem 1.3. (see [3, proof of Theorem 5.17]) Applying Corollary 2.6 for
F = CP (ε), and using Lemma 3.1, we get:

RΓ(P; CP (ε)
w

⊗OP(k))
∼←− RΓ(P∗; C′

P ∗(ε∗)
w

⊗OP∗(k
∗)).

Since −n − 1 < k∗ < 0, one has RΓ(P∗;OP∗(k
∗)) = 0, and hence the functor

RΓ(P∗; ·
w

⊗ OP∗(k
∗)) is well defined in the localized category Db

R−c(CP∗ ; Ṫ
∗P∗). By

Lemma 3.1, we may then replace C′
P ∗(ε∗) by CP ∗(ε∗) in the above isomorphism. In

view of (3.6) we then get:

Γ(P ; C∞P (ε|k)) ∼←− Γ(P ∗; C∞P ∗(ε∗|k∗)). (3.8)

Theorem A.9 implies that the inverse of the isomorphism (3.8) is the integral trans-

form R
(ε|k)
P of Definition 1.2.

Using (3.6), if U ⊂ P is a sub-analytic open subset, one easily checks that:

Γw(U ; C∞P (ε|k)) ' RΓ(P; CU(ε)
w

⊗OP(k)). (3.9)

In view of (3.8), Corollary 2.6 for F = CE(ε) gives:

R
(ε|k)
P Γw(E; C∞P (ε|k)) ' RΓ(P∗; (CE(ε) ◦ L)

w

⊗OP∗(k
∗)).

By Lemma 3.5, we obtain the d.t.:

R
(0∗|k)
P Γw(E; C∞P (0∗|k)) −→ Γ(P ∗; C∞P ∗(0|k)) −→ RΓ(P∗; CQ∗(1)

w

⊗OP(k∗))[1] −−→
+1

, (3.10)

R
(1∗|k)
P Γw(E; C∞P (1∗|k)) −→ Γw(P ∗

ξ◦ ; C
∞
P ∗(1|k)) −→ RΓ(P∗; CQ∗

w

⊗OP∗(k∗))[1] −−→
+1

. (3.11)

In the next subsection, in order to describe the above d.t.s (and hence to prove
Theorems 1.6, 1.7) we will establish some preliminary results.

3.3 Nonlocal Differentials

Recall Notation 3.2. Denote by p : P̃∗ξ◦ −→ P∗ the blow-up of P∗ along ξ◦, by D its
exceptional divisor, and consider the diagrams:

P∗ξ◦N n

i

~~}}
}}

}}
}} q

!!B
BB

BB
BB

B

P∗ H∗,

P̃∗ξ◦
p

��~~
~~

~~
~~ q̃

  B
BB

BB
BB

B

P∗ H∗.
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For ζ ′ ∈ H∗, p(q̃−1(ζ ′)) ⊂ P∗ is the complex projective line issued from ξ◦ with
tangent direction ζ ′ (recall that H∗ is identified with Ṫξ◦P∗/C×). Let k, l ∈ Z, and
let K be an OP̃∗ξ◦

-module. Set for short

K(k, l) = p−1OP∗(k)⊗p−1OP∗
K ⊗q̃−1OH∗

q̃−1OH∗(l).

Consider the kernels on P̃∗ξ◦ :

K = CP̃∗ξ◦
, K = OP̃∗ξ◦

.

In the next proposition, although q̃ is not a trivial bundle over H∗, we will improperly
use the term “fiber coordinate” σ for q. This has to be understood in the same sense
as the coordinate s in Definition 1.4 (i). For an intrinsic expression of the section
γm below, refer to Appendix B.

Proposition 3.8. Denoting by σ a “fiber coordinate” of q, the sections

γm = σmdσ ∈ Γ(P̃∗ξ◦ ; ΩP̃∗ξ◦/H∗ [∗D](−k∗, k∗ +m+ 1)),

for m a non negative integer, induce an isomorphism:∑
m≥0

α(γm) :
⊕
m≥0

DH∗(−k∗ −m− 1)
∼−→ DP∗(−k∗) ◦ K.

Proof. Let us begin by proving that the complex DP∗(−k∗) ◦ K is isomorphic to⊕
m≥0DH∗(−k∗ −m− 1). This is shown by the chain of isomorphisms:

DP∗(−k∗) ◦ K ' q̃∗p
−1DP∗(−k∗)

' q̃∗(DP̃∗ξ◦
[∗D](−k∗, 0))

' Rq̃!(DH∗←−P̃∗ξ◦
⊗L
DP̃∗

ξ◦

DP̃∗ξ◦
[∗D](−k∗, 0))

' DH∗ ⊗OH∗
Rq̃!(ΩP̃∗ξ◦/H∗ [∗D](−k∗, 0))

'
⊕
m≥0

DH∗(−k∗ −m− 1),

where in the last isomorphism we considered a “fiber coordinate” σ for q (refer to
Appendix B), and we used the identification for k, l ∈ Z:

Rq̃!(ΩP̃∗ξ◦/H∗ [∗D](k, l)) '
⊕
m≥0

OH∗(k − l −m− 1) · σmdσ. (3.12)

By the above identification, we also see that
∑

m≥0 γm is indeed the kernel of our
isomorphism. To this end, it is enough to compose the natural isomorphism:

Γ(P̃∗ξ◦ ; ΩP̃∗ξ◦/H∗ [∗D](−k∗, k∗ +m+ 1)) (3.13)

' HomDP∗×H∗
(D(DP∗(−k∗)) �DH∗(−k∗ −m− 1)[−n], h∗OP̃∗ξ◦

)
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with the isomorphism α of Lemma 2.3 (recall that h denotes the map (p, q̃)).

Applying formula (2.3) for L = K, and noticing that K ◦G ' Ri!q
−1G, we get:

Corollary 3.9. For any G ∈ Db
R−c(CH∗), the sections {γm}m≥0 induce an isomor-

phism:

RΓ(P∗;Ri!q−1G
w

⊗OP∗(k
∗))[1]

∼−→
∏
m≥0

RΓ(H∗;G
w

⊗OH∗(k∗ +m+ 1)).

For F ∈ Db
R−c(CP∗) and G ∈ Db

R−c(CH∗), the data of a morphism β : F −→
Ri!q

−1G and of the sections γm induce a morphism:

RΓ(P∗;F
w

⊗OP∗(k
∗))[1] −→

∏
m≥0

RΓ(H∗;G
w

⊗OH∗(k∗ +m+ 1))

obtained by composing RΓ(P∗; β
w

⊗OP∗(k
∗)) with the isomorphism of Corollary 3.9.

In the following proposition, we will explicitly describe some instances of the above
morphism for G equal to CH∗(0), CH∗(1) or CH∗ . In the first two cases, these
morphisms are precisely those given by the functionals introduced in Definition 1.4.

Proposition 3.10. With the notations of Definition 1.4, one has:

(i) The natural morphism CP ∗
ξ◦

(ε∗) −→ Ri!q
−1CH∗(ε∗)[1] and the sections {γm}m≥0

induce the morphism:

c
(0|·)
ξ◦

: Γw(P ∗
ξ◦ ; C

∞
P ∗(ε∗|k∗)) −→

∏
m≥0

Γ(H∗; C∞H∗(ε∗|k∗ +m+ 1))

ϕ 7→
∑
m≥0

c
(0|m)
ξ◦

ϕ.

Assume −n− 1 < k∗ < 0.

(ii) The natural morphism CP ∗(0) −→ Ri!q
−1CH∗(1)[1] in Db

R−c(CP∗ ; Ṫ
∗P∗) and the

sections {γm}m≥0 induce the morphism:

d
(1|k∗+·+1)
ξ◦

: Γ(P ∗; C∞P ∗(0|k∗)) −→
∏
m≥0

Γ(H∗; C∞H∗(1|k∗ +m+ 1))

ϕ 7→
∑
m≥0

d
(1|k∗+m+1)
ξ◦

ϕ.
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(iii) The identification CP∗ξ◦
∼−→ Ri!q

−1CH∗ and the sections {γm}m≥0 induce the
isomorphism:

d
(k∗+·+1)
ξ◦

: OP∗(k
∗)̂|ξ◦ −→

∏
m≥0

Γ(H∗;OH∗(k∗ +m+ 1))∑
m

ψm 7→
∑
m

ψk∗+m+1.

Proof. At the level of constant sheaves, the morphism in (i) is the natural adjunction
morphism:

CP ∗
ξ◦

(ε∗) ' Ri!CP ∗
ξ◦

(ε∗)

−→ Ri!q
!Rq!CP ∗

ξ◦
(ε∗) (3.14)

' Ri!q
−1CH∗(ε∗)[1].

(Here, to obtain the last isomorphism, note that P ∗
ξ◦
−→ H∗ is the global space of

the tautological bundle CH∗(1), so that Rq!CP ∗
ξ◦
' CH∗(1)[−1].) The morphism in

(iii) is similarly obtained, and the morphism in (ii) is the one appearing in (3.2).
At the level of C∞-functions, the morphism in (i) is clearly described by the

functionals c
(0|m)
ξ◦

. The fact that the morphism in (ii) is described by d
(1|k∗+m+1)
ξ◦

,
follows from Remark 1.5 (c). As for (iii), one has:

OP∗(k
∗)̂|ξ◦ ' RΓ(P∗; Cξ◦

w

⊗OP∗(k
∗))

' RΓ(P∗; CP∗ξ◦

w

⊗OP∗(k
∗))[−1],

where the last isomorphism is due to the assumption −n − 1 < k∗ < 0. A section

ψ ∈ OP∗(k
∗)̂|ξ◦ is a formal sum ψ =

∞∑
m=0

ψm, where ψm is a homogeneous polynomial

of degree m+ k∗ (hence only m ≥ −k∗ matters). For τ = σ−1, we have:

(d
(k∗+·+1)
ξ◦

ψ[ζ ′])m =

∫
q

ψ(σξ◦ + ζ ′)σm+1dσ

σ

=

∫
q

ψ(τ−1ξ◦ + ζ ′)τ−1−mdτ

τ

=

∫
q

ψ(ξ◦ + τζ ′)τ−k∗−m−1dτ

τ

= ψk∗+m+1[ζ
′],

where the last equality is a formal residue computation.
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3.4 Cavalieri Condition and Nonlocal Borel Theorem

We have now the tools to describe the morphisms (3.10) and (3.11). We do this in
the following theorem, which gives a cohomological proof of Theorems 1.6, 1.7.

Theorem 3.11. Assuming −n−1 < k < 0, there are natural short exact sequences:

0 −→ R
(0∗|k)
P Γw(E; C∞P (0∗|k)) −→ Γ(P ∗; C∞P ∗(0|k∗)) (3.15)

−−−−−−→
d
(1|k∗+·+1)
ξ◦

∏
m≥0

Γ(H∗; C∞H∗(1|k∗ +m+ 1)) −→ 0,

0 −→ R
(1∗|k)
P Γw(E; C∞P (1∗|k)) −→ Γw(P ∗

ξ◦ ; C
∞
P ∗(1|k∗)) (3.16)

−→
c

H1(P∗; CQ∗
w

⊗OP∗(k
∗)) −→ 0,

where the map c above enters the commutative diagram with exact row:

0 −→ OP∗ |̂ξ◦
d
(k∗+·+1)
ξ◦ //

∏
m≥0

Γ(H∗; C∞H∗(0|k∗ +m+ 1)) // H1(P∗; CQ∗
w

⊗OP∗(k
∗)) −→ 0

Γw(P ∗
ξ◦

; C∞P ∗(1|k∗))

c
33hhhhhhhhhhhhhhhhhhhhh

c
(0|·)
ξ◦

OO

(3.17)

Here, the morphisms c
(0|·)
ξ◦

, d
(1|k∗+·+1)
ξ◦

, and d
(k∗+·+1)
ξ◦

are the ones described in Propo-
sition 3.10.

Proof. The first exact sequence is obtained from (3.10) using Proposition 3.10 (ii),
while the second exact sequence is obtained from (3.11) noting that, since k∗ < 0

and Q∗ contains complex projective lines, H0(P∗; CQ∗
w

⊗OP∗(k
∗)) = 0. Applying the

functor RΓ(P∗; ·
w

⊗OP∗(k
∗)) to the commutative diagram:

0 // CQ∗ // CQ∗ // Cξ◦
// 0

CP ∗
ξ◦

(1)[−1]

OO 99ssssssssss

(where the vertical arrow is constructed in (3.14)) we get the commutative diagram:

OP∗ |̂ξ◦ // RΓ(P∗; CQ∗
w

⊗OP∗(k∗))[1] // RΓ(P∗; CQ∗
w

⊗OP∗(k∗))[1] −−→
+1

Γw(P ∗
ξ◦

; C∞P ∗(1|k∗))

c
44hhhhhhhhhhhhhhhhhh

OO

The diagram (3.17) is obtained from the one above by taking cohomology groups,
and by using Proposition 3.10 (i) and (iii).
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Proof of Theorems 1.6, 1.7. Part (i) of Theorems 1.6 and 1.7 immediately follows
by looking at (3.15). Let us then consider the case ε∗ ≡ 1, ω ≡ 0. The image

by R
(1∗|k)
P of the space Γw(E; C∞P (1∗|k)) is described by (3.16) as the kernel of the

morphism c. One sees by (3.17) that ϕ belongs to ker(c) if and only if c
(0|m)
ξ◦

ϕ is in

the image of d
(k∗+m+1)
ξ◦

, which is precisely the space of (k∗ + m + 1)-homogeneous
polynomials. This proves Theorem 1.6 (ii). The exactness of sequence (3.16) also
asserts that the morphism c is surjective. One sees by (3.17) that this implies that

the morphism c
(0|m)
ξ◦

ϕ is surjective, modulo the image of d
(k∗+m+1)
ξ◦

. This proves
Theorem 1.7 (ii).

4 Other Related Results

4.1 Laplace-Borel Theorem

Our proof of Theorems 1.6 and 1.7 consisted in successively applying the functor

RΓ(P; ·
w

⊗OP(k)) and the isomorphism (2.3) to the exact sequence:

0 −→ CE(ε) −→ CP (ε) −→ CH(ε) −→ 0,

and in describing the result. For x◦ ∈ P , Px◦ = P \ {x◦}, we can apply the same
procedure to the exact sequence:

0 −→ CPx◦ (ε) −→ CP (ε) −→ Cx◦(ε) −→ 0.

Applying · ◦ L, we get the d.t.:

CPx◦ (ε) ◦ L −→ C′
P ∗(ε∗)[−n] −→ CH∗ [−2n] −→

+1
,

where H∗ denotes the hyperplane of P∗ dual to x◦ ∈ P. For −n − 1 < k < 0, we
have the identifications:

RΓ(P∗; CH∗
w

⊗OP∗(k
∗))[−n] ' RΓ(P∗;OP∗(k

∗)̂|H∗)[−n]

'
∏
m≥0

RΓ(H∗;OH∗(k∗ −m))[−n]

'
∏
m≥0

RΓ(H∗;OH∗(k +m)),

where the first isomorphism may be obtained using Proposition 3.10 and Corol-
lary 2.6 (interchanging the role of P and P∗, and for F = Cx◦), and the last iso-
morphism is given by Serre duality. From the d.t. above, we thus get the exact
sequence:

0→ R
(ε|k)
P Γw(Px◦ ; C∞P (ε|k))→ Γ(P ∗; C∞P ∗(ε∗|k∗)) −−−→

e
(ε∗|·)
H∗

∏
m≥0

Γ(H∗;OH∗(k +m))→ 0,

which gives the following variant of Theorems 1.6 and 1.7 respectively:
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(i) The image by R
(ε|k)
P of the space of (ε|k)-homogeneous C∞-functions on P with

vanishing formal Taylor series at x◦, is isomorphic to the kernel of e
(ε∗|·)
H∗ .

(ii) The morphism e
(ε∗|·)
H∗ is surjective.

At least in the particular case ε ≡ 1, the m-th component of the morphism e
(ε∗|·)
H∗

is obtained as the composite:

e
(1∗|m)
H∗ : Γ(P ∗; C∞P ∗(1∗|k∗)) −−→

∂m
H∗

Γ(H∗; C∞H∗(1∗|k∗ −m))

↪→ Γ(H∗;BH∗(1∗|k∗ −m))

' Hom(D′(CH∗(1∗)),OH∗(k∗ −m))

' Hom(CH∗ [1− n],OH∗(k∗ −m))

−−→
f (m)

Hom(CH∗ [1− n],OH∗(k∗ −m))

' Hn−1(H∗;OH∗(k∗ −m))

' Γ(H∗;OH∗(k +m)),

where ∂m
H∗ is the usual m-th normal derivatives, where the arrow f (m) is induced by

the natural morphism CH∗ −→ CH∗ , and where the last isomorphism is given by Serre
duality. (Note that we used the identification D′(CH∗(ω)) ' CH∗(ω∗)[−n+ 1].)

4.2 Helgason’s Support Theorem

Let A = {(x, ξ) ∈ P × P ∗; 〈x, ξ〉 = 0} denote the real incidence relation. For a
locally closed subset D ⊂ P , we set

D̃ = g(A ∩ (D × P ∗)) = {ξ ∈ P ∗;∃x ∈ D such that 〈x, ξ〉 = 0},
D̂ = g(A ∩ f−1(D)) = {ζ ∈ P∗;∃x ∈ D such that 〈x, ζ〉 = 0}.

As in [3], we say that D is A-trivial if for any ζ ∈ D̂, one has:

C ∼−→ RΓ(ζ̂ ∩D; CD).

We then have the following version of Helgason’s support theorem (for the sake of

brevity, we consider only the transform R
(1∗|k)
P because, for k∗ = −1, it coincides

with the classical Radon transform).

Theorem 4.1. Assume −n − 1 < k < 0. Let D ⊂ E be an open A-trivial do-
main in P , and let ϕ ∈ Γ(P ∗; C∞P ∗(1|k∗)). Then, ϕ belongs to the image by R

(1∗|k)
P

of ΓD(P ; C∞P (1∗|k)) if and only if it belongs to Γ
D̃
(P ∗; C∞P ∗(1|k∗)) and satisfies the

Cavalieri condition (1.6).
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Briefly, the proof goes along the following lines. Set

Q∗
D = P∗ \ {[ζ]; [ξ] ∈ D̃, [η] ∈ ˜̃

[ξ] ∩D, for some ξ, η with [ξ + iη] = [ζ]},

and note that Q∗
E = Q∗. One then checks that there is a natural commutative

diagram:

CE(1∗) ◦ L // CP ∗
ξ◦

(1)[−n] // CQ∗ [1− n] −→
+1

CD(1∗) ◦ L // CD̃(1)[−n] //

OO

CQ∗
D
[1− n] −→

+1
,

OO

from which we get:

0 // R
(1∗|k)
P Γw(E; C∞P (1∗|k)) // Γw(P ∗

ξ◦
; C∞P ∗(1|k∗)) // H1(P∗; CQ∗

w

⊗OP∗(k∗)) // 0

0 // R
(1∗|k)
P Γw(D; C∞P (1∗|k)) //

OO

Γw(D̃; C∞P ∗(1|k∗)) //

OO

H1(P∗; CQ∗
D

w

⊗OP∗(k∗))

OOOO

One then concludes using arguments similar to those in the proof of Theorem 3.11,
and noticing that

Γw(D; C∞P (1∗|k)) ' ΓD(P ; C∞P (1∗|k)),
since D is locally on one side of its boundary.

4.3 Conformal Radon Transform

Let [x] = [x0, . . . , xn] be a system of homogeneous coordinates in P , and let Sϑ ⊂ P
be the quadric of equation �ϑ(x) = 0, where ϑ ∈ (Z/2Z)n, ϑ 6= (0, . . . , 0), and
�ϑ(x) = x2

0+(−1)ϑ1x2
1+· · ·+(−1)ϑnx2

n. Note that if ϑ = (1, . . . , 1), the stereographic
projection identifies the restriction of the real projective transform to the sphere Sϑ

with the conformal Radon transform.
For k ∈ Z and ε ∈ Z/2Z, let us denote by C∞Sϑ

(ε|k) the C∞-line-bundle on Sϑ,
whose sections satisfy the homogeneity conditions (1.1). A theorem of [6], asserts

that for−n−1 < k < −2, the transform R
(1∗|k)
P interchanges Γ(Sϑ; C∞Sϑ

(1∗|k+2)) with
the sections ϕ ∈ Γ(P ∗; C∞P ∗(1|k∗)) satisfying the homogeneous differential equation:

�ϑ(∂ξ)ϕ(ξ) = 0.

Let us explain how it is possible to recover and precise this result in our framework.
Denote by Sϑ ⊂ P the complexification of Sϑ defined by the equation �ϑ(z) = 0.

Then, one has:

C∞Sϑ
(ε|k) ' (CSϑ

(ε)
w

⊗OP)⊗OP
OSϑ

(k)

' RHomDP
(DOSϑ

(k)∗,CSϑ
(ε)

w

⊗OP),
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where we set for short DOSϑ
(k)∗ = DP ⊗OP

RHomOP
(OSϑ

(k),OP). Denoting by
M�ϑ

(−k∗) the left coherent DP∗-module defined be the exact sequence:

0 −→ DP∗(−k∗ + 2) −−−−→
·�ϑ(∂ξ)

DP∗(−k∗) −→M�ϑ
(−k∗) −→ 0, (4.1)

we have the following lemma, similar to a remark in [3].

Lemma 4.2. Assume that −n − 1 < k < −2, then the sections sk, sk+2 in (2.11)
induce an isomorphism:

M�ϑ
(−k∗) ∼−→ DOSϑ

(k + 2)∗ ◦ L.

Proof. The complex DOSϑ
(k + 2)∗ is concentrated in degree −1, and is defined by

the exact sequence:

0 −→ DP(−k − 2) −−−→
�ϑ(z)·

DP(−k) −→ DOSϑ
(k + 2)∗[1] −→ 0.

Since −n− 1 < k, k+2 < 0, the conclusion follows from Theorem 2.5, noticing that
�ϑ(∂ξ) is the Radon transform of �ϑ(z).

Applying Theorem 2.2, we thus get an isomorphism:

R
(1∗|k)
P Γ(Sϑ; C∞Sϑ

(1∗|k)) ' RHomDP∗
(M�ϑ

(−k∗), (CSϑ
(1∗) ◦ L)

w

⊗OP∗)[n− 1], (4.2)

and we are reduced to compute CSϑ
(1∗)◦L. For the sake of brevity, let us restrict to

the simplest case ϑ = (1, . . . , 1). Let H ⊂ P be the hyperplane of equation x0 = 0,
and D = {x; �ϑ(x) ≥ 0} be the open ball in the affine chart E = P \ H with
boundary S = Sϑ. Consider the short exact sequence:

0 −→ CD(1∗) −→ CD(1∗) −→ CS(1∗) −→ 0.

In the notations of paragraph 4.2, since D is closed convex we easily get CD(1∗)◦L '
C

P ∗\D̂
. Taking the zero-th cohomology groups in (4.2), we thus get by Theorem 4.1

that R
(1∗|k)
P interchanges Γ(Sϑ; C∞Sϑ

(1∗|k)) with the sections ϕ ∈ Γ
D̃
(P ∗; C∞P ∗(1|k∗)),

satisfying the Cavalieri condition (1.6) and the equation �ϑ(∂ξ)ϕ(ξ) = 0.

4.4 Affine Radon Transform of Other Functional Spaces

The sheaves of (ε|k)-homogeneous distributions, analytic functions, and hyperfunc-
tions on P are given by:

DbP (ε|k) = THom(D′CP (ε),OP(k))

' THom(CP (ε∗),OP(k))[n],

AP (ε|k) = CP (ε)⊗OP(k),

BP (ε|k) ' RHom (CP (ε∗),OP(k))[n].
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Applying formula (2.4), or the analogue of Theorem 2.2 for
w

⊗ and THom, replaced
with ⊗ and RHom respectively (see [2], [13]), we can state the results analogue to
those in section 1 for C∞ replaced with Db, A or B. In particular, the analogue of
Theorems 1.6, 1.7 are deduced from the following analogue of Theorem 3.11. For
the sake of brevity, we consider here only one parity for ε in each case.

For −n− 1 < k < 0, there are exact sequences:

0 −→ R
(0|k)
P Γt(E;DbP (0|k)) −→ Γ(P ∗;DbP ∗(0∗|k∗)) (4.3)

−→
∏
m≥0

Γ(H∗;DbH∗(1∗|k∗ +m+ 1)) −→ 0,

0 −→ Γ(P ∗;AP ∗(0|k∗)) −→
a

H1
c (P∗ξ◦ ; q

∗AH∗(1|k∗)) (4.4)

−→ R
(0∗|k)
P H1

c (E;AP (0∗|k)) −→ 0,

0 −→ Γ(P ∗;BP ∗(0∗|k∗)) −→
b

H1
c (P∗ξ◦ ; q

∗BH∗(1∗|k∗)) (4.5)

−→ R
(0|k)
P Γ(E;BP (0|k)) −→ 0.

Here Γt(E;DbP (0|k)) = THom(CE(0∗);OP(k))[n] denotes the space of tempered
distributions on E, and q∗ denotes the O-module inverse image (i.e., if F is a flat
OH∗-module, we set q∗F = OP ∗

ξ◦
⊗q−1OH∗

q−1F).

Note that (4.3) is essentially different from (4.4) or (4.5), in that the image of

R
(ε|k)
P appear as a quotient (or as an extension for the parity of ε not considered

above) and not as a subspace of the corresponding space on P ∗. This is natural, since
conditions like (1.5) or (1.6) are meaningless without imposing growth conditions.
(See [9] for a study of the Radon transform for some classes of hyperfunctions with
tempered growth at infinity.)

Let us briefly sketch how we obtained (4.4) and how the morphism a is described
(the arguments for (4.5) and b are similar). Applying the functor RΓ(P; · ⊗OP(k))
and the isomorphism (2.3) to the exact sequence:

0 −→ CE(0∗) −→ CP (0∗) −→ CH(0∗) −→ 0,

we get the exact sequence:

0→ Γ(P ∗;AP ∗(0|k∗))→ H1(P∗; CQ∗(1)⊗OP∗(k
∗))→ R

(0∗|k)
P H1

c (E;AP (0∗|k))→ 0,

and we have

RΓ(P∗; CQ∗(1)⊗OP∗(k
∗)) ' RΓc(P∗ξ◦ ; CQ∗(1)⊗OP ∗

ξ◦
(k∗))

' RΓc(P∗ξ◦ ; q
−1CH∗(1)⊗OP ∗

ξ◦
⊗q−1OH∗

q−1OH∗(k∗))

' RΓc(P∗ξ◦ ; q
∗AH∗(1|k∗)).
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In the above short exact sequence we used the fact that RΓc(E;AP (0∗|k)) is con-
centrated in degree one. (Recall that

H1
c (E;AP (0∗|k)) ' lim←−

K

Γ(P \K;AP (0∗|k))
Γ(P ;AP (0∗|k))

,

where K ranges over the family of compact subsets of E.) The arrow a is described
as follows. Denoting by P 1 and P1 a real and a complex one-dimensional projective
space, and choosing ∞ ∈ P 1, we have the natural morphisms

CP 1 −→ C∞ −→ CP1\{∞}[1]

from which we get a morphism

Γ(P 1;AP 1) −→ H1
c (P1 \ {∞};OP1) (4.6)

whose topological dual:

Γ(P1 \ {∞};OP1) −→ Γ∞(P 1;BP 1)

−→ Γ(P 1;BP 1)

is easily understood. The arrow a is the analogue of (4.6), with real analytic param-
eters.

A Quantization of Integral transforms

A.1 Distribution Kernels

Let us consider a general correspondence of complex manifolds:

S
f

��~~
~~

~~
~

g

��@
@@

@@
@@

X Y.

Let F ∈ Db
R−c(CX), G ∈ Db

R−c(CY ), M ∈ Db(DX), N ∈ Db(DY ), L ∈ Db
R−c(CS),

and set L = THom(L,OS). Set:

L
∗◦G = Rf∗(L⊗ g−1G).

Assume to be given morphisms:

α ∈ HomDY
(N ,M◦L), β ∈ Hom(F,L

∗◦G) ' Hom(f−1F,L⊗ g−1G).
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Then, there is a natural morphism:

RΓc(Y ;THom(G,ΩY )⊗L
DY
N ) −→ RΓc(X;THom(F,ΩX)⊗L

DX
M)[−dS/X ], (A.1)

obtained as the composite of:

RΓc(Y ;THom(G,ΩY )⊗L
DY
N )

−→
α

RΓc(Y ;THom(G,ΩY )⊗L
DY

(M◦L))

= RΓc(Y ;THom(G,ΩY )⊗L
DY

g∗(f
−1M⊗L

OS
L))

−−→
g−1

RΓc(S;THom(g−1G,ΩS)⊗L
DS

(f−1M⊗L
OS
L))

' RΓc(S; (THom(g−1G,ΩS)⊗L
OS
THom(L,OS))⊗L

DS
f−1M)

−→
•

RΓc(S;THom(L⊗ g−1G,ΩS)⊗L
DS
f−1M)

−→∫
f

RΓc(X;THom(Rf ∗(L⊗ g−1G),ΩX)⊗L
DX
M)[−dS/X ]

= RΓc(X;THom(L
∗◦G,ΩX)⊗L

DX
M)[−dS/X ]

−→
β

RΓc(X;THom(F,ΩX)⊗L
DX
M)[−dS/X ].

(A.2)

Here, the first and last morphisms are induced by α and β respectively. The mor-
phisms g−1 and

∫
f

are obtained from formulas (5.20) and (5.10) of [13], respectively.
Recalling that the interior product is the restriction to the diagonal of the exterior
product, the morphism • is obtained from formulas (5.20) and (5.2) of loc. cit.

Remark A.1. By tracing back the proof of [13, Theorem 10.8], it is possible to
check that, under the hypotheses of Theorem 2.2, (A.1) coincides with (2.7).

The morphism (A.1) may be considered as an integral transform, in that it
consists in: (1) pulling back a “function” from Y to S, (2) taking its product with a
kernel on THom(L,OS) induced by α, (3) integrating along the fibers of f , and using
β to recognize the result as a “function” on X. Here, we use the term “quantization”
to refer to the fact that such a morphism depends on the choice of α and β.

As we saw in section 3.2 (where we dealt with the functor
w

⊗ instead of THom),
in the framework of the complex Radon transform, for a suitable choice of F , G,M
and N , (A.1) reads:

Γ(P ∗;DbP ∗(ε∗|k∗)) ∼−→ Γ(P ;DbP (ε|k)), (A.3)

and one would like to check that this integral transform coincides with the Radon
transform:

ϕ[ξ] 7→
∫
ϕ[ξ]δ(n+ε∗|n+k∗)(〈x, ξ〉)ω[ξ]. (A.4)
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In terms of (A.2), this means that we need to rewrite the composition of the last
two morphisms

∫
f

and β:

RΓc(S;THom(L⊗ g−1G,ΩS)⊗L
DS
f−1M)

−−→
β◦

∫
f

RΓc(X;THom(F,ΩX)⊗L
DX
M)[−dS/X ], (A.5)

so that a distribution kernel appears. We begin with a technical lemma.

Lemma A.2. The morphism (A.5) decomposes into:

RΓc(S;THom(L⊗ g−1G,ΩS)⊗L
DS
f−1M)

−→
β

RΓc(S;THom(f−1F,ΩS)⊗L
DS
f−1M)

−→∫
f

RΓc(X;THom(Rf∗f
−1F [dS/X ],ΩX)⊗L

DX
M)

−→ RΓc(X;THom(F [dS/X ],ΩX)⊗L
DX
M),

where the last morphism is induced by the adjunction morphism id −→ Rf∗f
−1.

Proof. It is easy to check the commutativity of the following diagram, where, for
lack of space, we omit to write RΓc:

THom(L⊗ g−1G, ΩS)⊗L
DS

f−1M

��

// THom(f−1F,ΩS)⊗L
DS

f−1M

��
THom(Rf∗(L⊗ g−1G)[dS/X ],ΩX)⊗L

DX
M //

β
��

THom(Rf∗f
−1F [dS/X ],ΩX)⊗L

DX
M

rrffffffffffffffffffffffff

THom(F [dS/X ],ΩX)⊗L
DX
M

Note that if supp(G) is contained in a submanifold N ⊂ Y , then the morphism
f−1F −→ L⊗ g−1G induced by β factorizes in:

f−1F
β //

%%KKKKKKKKKK
L⊗ g−1G

F �S CN

b

88ppppppppppp

(A.6)

where we set F �S CN = f−1F ⊗ g−1CN .
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Proposition A.3. Assume that supp(G) is contained in a submanifold N ⊂ Y .
Then, (A.5) factorizes in:

RΓc(S;THom(L⊗ g−1G,ΩS)⊗L
DS
f−1M)

−→
b

RΓc(S;THom(F �S CN ,ΩS)⊗L
DS
f−1M)

−→∫
f

RΓc(X;THom(Rf∗(F �S CN)[dS/X ],ΩX)⊗L
DX
M)

−→ RΓc(X;THom(F [dS/X ],ΩX)⊗L
DX
M),

where the first map is the “boundary value” morphism induced by the arrow b in
(A.6), and the last morphism is induced by the natural morphisms F −→ Rf∗f

−1F '
Rf∗(F �S CY ) and CY −→ CN .

Proof. In view of Lemma A.2, the statement follows from the commutativity of the
following diagram, where again, for lack of space, we omit to write RΓc:

THom(L⊗ g−1G, ΩS)⊗L
DS

f−1M

β
��

b

,,XXXXXXXXXXXXXXXXXXXXXXXX

THom(f−1F,ΩS)⊗L
DS

f−1M
∫

f

��

THom(F �S CN ,ΩS)⊗L
DS

f−1Moo

∫
f

��
THom(Rf∗f

−1F [dS/X ],ΩX)⊗L
DX
M

��

THom(Rf∗(F �S CN )[dS/X ],ΩX)⊗L
DX
Moo

rrffffffffffffffffffffffff

THom(F [dS/X ],ΩX)⊗L
DX
M.

Here, the top triangle is induced by (A.6).

In order to apply the above proposition to check that, in the case of the Radon
transform, (A.3) is described by (A.4), we will give in Proposition A.8 a construction
of the distribution δ(ε|k)(〈x, ξ〉) as boundary value of the Leray section (2.11).

A.2 Boundary Values

We begin with a topological lemma.

Lemma A.4. Let M be a connected real analytic manifold, and let X be a com-
plexification of M . For ϕ ∈ Γ(X;OX), let U = {z ∈ X : ϕ(z) 6= 0}, Y = X \ U ,
ω± = {z ∈ X : ± Imϕ(z) > 0}, ω = ω+ ∪ ω−. Assume that ϕ satisfies:

(i) Imϕ|M = 0,
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(ii) dϕ 6= 0.

Then, Hom(D′CM ,Cω±) ' C, and it has a canonical generator γ±. Assume more-
over that Y ∩M is connected, and that:

(iii) H1(M ; CM) = 0.

Then, the natural morphism Cω −→ CU (given by the inclusion ω ⊂ U), induces an
isomorphism:

Hom(D′CM ,Cω)
∼−→ Hom(D′CM ,CU).

Proof. Hypothesis (i) implies that ω± ⊃ M , and (ii) implies that D′Cω± ' Cω± .
We then have:

RHom (D′CM ,Cω±) ' RHom (D′Cω± , D
′D′CM)

' RHom (Cω± ,CM)

' CM .

(A.7)

Then, γ± corresponds to 1 ∈ Γ(M ; CM), or, equivalently, to the natural morphism
Cω± −→ CM , 1 7→ 1.

Setting N = X \ ω, the exact sequences:

0 −→ Cω −→ CU −→ CU\ω −→ 0,

0 −→ CU\ω −→ CN −→ CY −→ 0,

induce the d.t.s:

RHom (D′CM ,Cω) −→ RHom (D′CM ,CU) −→ RHom (D′CM ,CU\ω) −→
+1
, (A.8)

RHom (D′CM ,CU\ω) −→ RHom (D′CM ,CN) −→ RHom (D′CM ,CY ) −→
+1

. (A.9)

By (A.8), to prove the second part of the statement we are reduced to show that:

F j := HjRHom(D′CM ,CU\ω) = 0, for j = −1, 0. (A.10)

One has:

RHom (D′CM ,CY ) ' RHom (D′CY ,CM)

' RHom (CY [−2],CM)

' RHom (CY ∩M ,CM)[2]

' orY ∩M/M [1]

' CY ∩M/M [1],
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an orientation of Y ∩M in M being given by Reϕ|M > 0. Similarly, noticing that
N ⊃M and that orN/X is trivial, one has:

RHom (D′CM ,CN) ' CM [1].

Applying the functor RΓ(X; ·) to (A.9), we thus get the exact sequence:

0 −→ F−1 −→ Γ(M ; CM) −→
j

Γ(Y ∩M ; CY ∩M/M) −→ F 0 −→ H1(M ; CM) = 0,

where the last equality is due to hypothesis (iii). Since M and Y ∩M are connected,
j is an isomorphism, and (A.10) follows.

Following [16], to u ∈ Hom(D′CM ,CU) we associate the “boundary value map”:

bu : THom(CU ,OX) −→ Γ(M ;DbM), (A.11)

given by bu = THom(u,OX). Under the hypotheses of the above lemma, any
morphism u : D′CM −→ CU factorizes into:

D′CM u
//

##G
GGGGGGG CU

Cω

==||||||||

In particular, we get the following result:

Proposition A.5. With the notations and the hypotheses of Lemma A.4, for any
u ∈ Hom(D′CM ,CU) there exist unique constants c± ∈ C, such that:

bu(f) = c+bγ+(f |ω+) + c−bγ−(f |ω−). (A.12)

A.3 Quantization of Real Projective Duality

Let us now consider the Radon transform, associated to the correspondence:

A � � // P× P∗
f

{{wwwwwwwww
g

$$H
HH

HH
HH

HH

P P∗.

Recall that Ω = (P× P∗) \ A.

Lemma A.6. For F ∈ Db(CP), G ∈ Db
R−c(CP∗), there is a natural isomorphism:

α : Hom(F �D′G,CΩ) ' Hom(F,CΩ ◦G).
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Proof. One has the chain of isomorphisms:

Hom(F,CΩ ◦G) ' Hom(f−1F,CΩ ⊗ g−1G)

' Hom(f−1F,RHom (g−1D′G,CΩ))

' Hom(F �D′G,CΩ),

where the last isomorphism follows from [12, Proposition 5.4.14], using the fact that
T ∗

A(P× P∗) ∩ (T ∗
PP× T ∗P∗) ⊂ T ∗

P×P∗P× P∗.

Recall that P = P (V ) for an (n + 1)-dimensional real vector space V , so that

P = P(W ) for a complexification W of V . Set Ω̃ = {(z, ζ); 〈z, ζ〉 6= 0} ⊂ Ẇ × Ẇ ∗.

Lemma A.7. For Fε = D′(CP (ε))[−n], Gε∗ = D′(CP ∗(ε∗)), there is a natural
isomorphism: ⊕

ε∈Z/2Z

Hom(Fε,CΩ ◦Gε∗) ' Hom(D′CV̇×V̇ ∗ ,CΩ̃).

Proof. Denote by γ : Ẇ × Ẇ ∗ −→ P × P∗ the natural projection. One has the
isomorphisms:

Hom(D′CV̇×V̇ ∗ ,CΩ̃) ' Hom(D′CV̇×V̇ ∗ , γ−1CΩ)

' Hom(CV̇×V̇ ∗ [−2n− 2], γ!CΩ[−4])

' Hom(Rγ!CV̇×V̇ ∗ [2− 2n],CΩ)

'
⊕

ε,η∈Z/2Z

Hom(CP (ε) � CP ∗(η)[−2n],CΩ)

'
⊕

ε,η∈Z/2Z

Hom(Fε �Gη,CΩ)[−n]

'
⊕

ε,η∈Z/2Z

Hom(Fε,CΩ ◦Gη∗),

where the fourth isomorphism follows from Lemma 3.7, and the last isomorphism
from Lemma A.6. By Lemma A.4, the first term in the above chain of isomorphisms
is isomorphic to C2. One then concludes by noting that direct summands in the last
line are different from zero for ε = η, due to Lemma 3.1.

Note that the hypotheses of Lemma A.4 are satisfied for M = V̇ × V̇ ∗, X =
Ẇ × Ẇ ∗, ϕ(z, ζ) = 〈z, ζ〉. By the identification in the above lemma, the section βε

defined in (3.1) induces a boundary value morphism:

bβε : THom(CΩ̃,OẆ×Ẇ ∗) −→ Γ(V̇ × V̇ ∗;DbV̇×V̇ ∗).
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Proposition A.8. In the above notations, up to a non-zero multiplicative constant
c ∈ C×, one has:

bβε

(
1

2πi〈z, ζ〉k+1

)
= c δ(ε|k)(〈x, ξ〉).

Proof. By Proposition A.5, bβε(1/2πi〈z, ζ〉k+1) is a linear combination of δ(0|k)(〈x, ξ〉)
and δ(1|k)(〈x, ξ〉). One then concludes by a parity argument.

Theorem A.9. Let F = D′(CP (ε))[−n], G = D′(CP ∗(ε∗)), M = DP(k), N =
DP∗(k

∗), L = CΩ, L = THom(L,OP×P∗). Let:

α(sk∗) ∈ HomDP∗
(N ,M◦L), βε ∈ Hom(F,L ◦G),

be the sections defined by (2.11) and (3.1) respectively. In this case, (2.8) is given
by:

R
(ε∗|k∗)
P ∗ : Γ(P ∗;DbP ∗(ε∗|k∗)) −→ Γ(P ;DbP (ε|k)) (A.13)

ϕ[ξ] 7→
∫
ϕ[ξ]δ(n+ε∗|n+k∗)(〈x, ξ〉)ω[ξ].

Moreover, (2.7) enters a commutative diagram:

Γ(P ∗;DbP ∗(ε∗|k∗))
R

(ε∗|k∗)
P∗

∼
// Γ(P ;DbP (ε|k))

Γ(P ∗; C∞P ∗(ε∗|k∗))
?�

OO

Γ(P ; C∞P (ε|k)).
?�

OO

(2.7)

∼
oo

Proof. To prove (A.13), with the notations of Proposition A.3, we have to check that
the boundary value map b induced by βε sends ϕ[ξ]sk∗ [z, ξ]ω[ξ] to the distribution
δ(n+ε∗|n+k∗)(〈x, ξ〉)ω[ξ]. This is clear from Proposition A.8. The commutativity of
the diagram follows from the functoriality of the constructions.

B Homogeneous Coordinates for the Blow-up

Denote by p : P̃∗ξ◦ −→ P∗ the blow-up of P∗ along ξ◦. In terms of microlocal geometry,

P̃∗ξ◦ is identified with the projective normal deformation of ξ◦ in P∗. In fact, there
are natural maps (cf e.g., [12, §4.1], where the analogous construction is performed
within the framework of real manifolds):

P̃∗ξ◦ −→t C/C× ' {0, 1} H∗ � � s //

��

P̃∗ξ◦
p

��

P∗ξ◦? _
̃oo

O o

��~~
~~

~~
~~

~

{ξ◦} � � // P∗
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with P∗ξ◦ = t−1(0). Moreover, as we noted in subsection 3.3, denoting by H∗ the
projective tangent space to P∗ at ξ◦ there are natural correspondences

P∗ξ◦N n

i
~~}}

}}
}}

}} q

!!B
BB

BB
BB

B

P∗ H∗,

P̃∗ξ◦
p

��~~
~~

~~
~~ q̃

  B
BB

BB
BB

B

P∗ H∗.

For ξ◦ = [1, 0, . . . , 0], P∗ξ◦ may be realized as the quotient space of C × (Cn \ {0})
by the relation (σ, ζ ′) = (λσ, λζ ′) for λ ∈ C×. Similarly, P̃∗ξ◦ may be realized as the
quotient space of (C2 \ {0})× (Cn \ {0}) by the relation

(υ0, υ1, ζ
′) = (λµυ0, µυ1, λζ

′) for λ, µ ∈ C×. (B.1)

We denote by [[υ, ζ ′]] the bi-homogeneous coordinate system on P̃∗ξ◦ associated to
(υ, ζ ′). In these coordinates, the above maps read:

p([[υ, ζ ′]]) = [υ0, υ1ζ
′],

t([[υ, ζ ′]]) = [υ1],
̃([σ, ζ ′]) = [[σ, 1, ζ ′]],
q([σ, ζ ′]) = [ζ ′],
q̃([[υ, ζ ′]]) = [ζ ′].

(B.2)

This allows us to give a precise meaning to the sections γm of Proposition 3.8 as:

γm[[υ, ζ ′]] =
υm

1

υm+2+k∗
0

ω[υ],

for σ = υ1/υ0. The isomorphisms (3.12) and (3.13) used in the proof of Proposi-
tion 3.8 also follow from (B.1) and (B.2). In particular, (3.12) uses the identification

̃−1OP̃∗ξ◦
(k, l) ' OP∗ξ◦

(k − l).

Of course, the same description holds in the real case. Denoting by [[u, ξ′]] a
system of bi-homogeneous coordinates on the blow-up of P ∗ along ξ◦, we may then
intrinsically rewrite the functionals of Definition 1.4 as follows:

d
(ω|m)
ξ◦

ϕ[ξ′] =

∫
q̃

ϕ[u0, u1ξ
′]
δ(ω|m)(u0/u1)

u2+k∗
0

ω[u],

c
(ω|m)
ξ◦

ϕ[ξ′] =

∫
q̃

ϕ[u0, u1ξ
′]
sgn(u1/u0)

ω(u1/u0)
m

u2+k∗
0

ω[u],

for t = u0/u1, s = u1/u0.
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(1985).

[12] , Sheaves on manifolds, Springer, no. 292, 1990.

[13] , Moderate and formal cohomology associated with constructible sheaves,
Mém. Soc. Math. France (N.S.) no. 64 (1996).

Andrea D’Agnolo 35



Radon Transform and Cavalieri Condition: a Cohomological Approach

[14] M. Kashiwara and T. Tanisaki, Kazhdan-Lusztig conjecture for affine Lie alge-
bras with negative level. II. Non-integral case, Duke Math. J. (1996).
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